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Computers are useless. They can only 
give you answers. (Pablo Picasso) 

Preface 

 

 

You do not have to learn assembly language. 

Please be aware that it is generally considered to be hard and laborious experience with no 

immediately visible revenue. But if you started reading this book it is possible that you want to 

or need to know more about computer architecture, assambly programming, microprocessors 

and associated electronics. Engineering experience that comes with skills in these areas can 

hardly be overestimated. Deeper understanding of microprocessors and related electronics is 

invaluable to both hardware and software engineers. Furthermore, as microprocessors became 

ubiquitous, it is virtually impossible to avoid them in present-day and future electrical projects. 

Cars and computers are often compared as both of these inventions were very disruptive 

and eventually affected lives of the global population. So, let us make here a similar attempt 

and compare both technologies from the human point of view. The first car that used 

microprocessor was Cadillac Seville from 1978. Contemporary cars might have more than 

100 microprocessors on board. Drivers and passengers are oblivious to this fact because 

these embedded systems “just work” and stay invisible unless there is some failure. Vehicular 

electronics, that strongly relies on microprocessors nowadays, must be highly reliable because 

human lives are on the stake. 

Many drivers can list advertised parameters of their cars such as engine horsepower or 

fuel efficiency. However, most of them are not skilled in mechanical engineering and need 

help from professionals in case of problems with vehicle. Similarly, many people know how 

“fast” their computer is in terms of CPU frequency clocking and how much “memory” (RAM) 

it has. But it does not make them computer engineers. Did you ever opened computer case 

and speculated how it works? Or even maybe, did you assemble your own PC computer from 

individual components? Did you ever wondered how the operating system interacts with the 

hardware? Maybe you tried to guess how user applications such as colorful computer games 

or scientific simulations make appearance on the screen? I must assume here that you have 

enough curiosity about the topic presented in this book. 

I need to ask you to acknowledge that there is no guarantee that you will learn something 

from this book as from any particular book about programming. Effort to code or design 

computing systems is creative process and as such it is skill built mainly on practice. Reading 

any book will not replace practical efforts which have to be taken. However, you may need 

a guide if you are going on a tour in the brave new world of microprocessor engineering. 

Therefore I hope that this handbook will help you in the efforts you are going to make and 

support you in your training. 

To sum up above paragraphs in brief I consider that we need: 
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• awareness – perception of the microprocessors role and importance in the modern 

world, 

• curiosity – inquisitiveness is the best long-term support to tackle with steep learning 

curve, 

• commitment – personal obligation beats any amount of learning by heart. 

Possibly you are aware of the fact that libraries are full of books about computers, 

programming and electronics. I can recommend Jeff Dunteman “Assembly Language Step-by-

Step: Programming with Linux”  although it is for 32-bit architecture. Perhaps you prefer to 

browse on-line materials where even more information (but less structured) can be found. 

If there are so many books and materials already then why should we have yet another 

volume on such topic? Exactly because there are so many available sources! For inexperienced 

person it is not that easy to decide to which extent specific book corresponds to a 

programming environment that is in use or how much it is related to specific processor 

architecture. This book was based on more than 10 year of academic experience in teaching 

Microprocessor Engineering and even more in programming with use of many different high 

and low-level languages including assemblers of MOS 6502, TMS320, Intel 8051, Intel x86, Intel 

x86_64 (AMD 64-bit extensions), and ARM Cortex family. It is oriented towards students at 

Faculty of Electrical Engineering at Warsaw University of Technology and courses that are held 

there but might be useful for any person interested in this topic. 

The book is divided into several chapters. First is dedicated to basic mathematical 

background which is mainly on numeral systems and logic. Part two is a discussion on key 

components in modern computing machinery like processors and memory. Third chapter 

briefly analyzes wired transmission standards that are widely implemented in contemporary 

microcontrollers and used in electronic systems nowadays. Fourth chapter is introduction to 

programming environment in Linux operating system. Fifth chapter is core of the book as it 

contains discussion on practical aspects of programming in x86_64 architecture . 

Why Linux-based approach? There are no restrictions often found in commercial or 

“academic” software where only “first dose” is free of charge and some day you or someone 

else will have to pay for it. 

Linux is vital point in free and open source software ecosystem that grown up from GNU 

project and liberal licenses like GPL, BSD and MIT. You may run such software as you wish, for 

any purpose. You may study how such programs work, and change them so they do what you 

wish. It assumes that source code is always available. You may redistribute such software and 

share it with others. You may redistribute code modified with your changes so others can use 

them too . 

I consider GNU/Linux as the best choice for systemic education at all levels, self-training 

purposes, scientific research, technical experimentation, reliable applications and software 

development. There are numerous tools for programming purposes available on Linux, it is 

easy to get them and they are free. Free as in “freedom” and also free as in “free beer” . Linux is 

an Unix-world offspring and “Unix was designed for software development from day one, and 

it shows” 1. 
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Disclaimer 

It is hardly possible to write technical textbook without references to existing products. 

Author’s intention was to provide book with practical value hence many brands and companies 

are mentioned here. However, readers are asked to remember and understand that most 

products can be replaced with parts with similar functionality. Furthermore we endorse 

healthy competition in the industry which is not limited to major enterprises. There are many 

more companies on the market, which in spite of being smaller often specialize and provide 

products with notable features above the average. Good engineering practice is to analyze 

current market and seek for optimal solution. 

All product names, trademarks and registered trademarks are property of their respective 

owners. All company, product and service names used in this book are for identification 

purposes only. Use of these names, trademarks and brands does not imply endorsement. 
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1. Numbers in Computing 

Mathematics is the most beautiful and most 

powerful creation of the human spirit. 

Stefan Banach 

Computer processors might be perceived as extremely efficient “number crunchers” which 

means that they process enormous streams of information expressed only with numbers. It is 

worth for engineers to understand various ways by which electronic systems process these 

numbers. 

Humans in almost every corner of the earth are used to decimal system. This is so easy 

and natural to count with fingers hence positional system based on powers of tens is the 

most common nowadays. It is well known in practice but revising it might be helpful in 

understanding other systems discussed here. Look at the example: 

In computer systems decimal numbers usually have no prefix or suffix but sometimes they 

are suffixed with “d”: . 

Binary System 

Computers do not use decimal system. They are working on bits where bit is unit of 

information. It can have only one of two possible but different values such as: 

True False 

1 0 

Day Night 

Binary system has only two digits: 0 and 1. It is also positional as decimal system, but the base 

equals 2 (that is number of digits). Binary numers sometimes are suffixed with letter “b” or 

prefixed with “0b”. In the following example every multiplicand is expressed in decimal mode 

but it was omitted to simplify the equation and make it easier to follow the process: 

Above example also shows how binary number is converted to decimal mode. The series of 

multiplicands (starting from the rightmost position) in this conversion is easy to understand, 

reproduce or even remember: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8129, 16384, 

32768, 65536, … 

Conversion in from decimal mode to binary is a bit more tricky and there are several ways 

Numbers in Computing  |  5



to do it. First approach is repetitive division by 2 with remainder that indicates value of bit at 

specific position. Example: 

If we write remainders starting from the last one we will get binary value: 1011b. 

The above method works well for any value. But for small values simpler method might be 

employed which is based on subtraction. However, it requires to know (e.g. remember) weights 

at different digit positions. In every step a biggest possible weight is subtracted from the 

number that is being converted provided that result will remain positive number. At positions 

with corresponding weights “ones” are set leaving all other positions with “zeros”. Example: 

This method may be much faster than previous one for small numbers. There is no threshold 

given how “small” the number should be as it depends on experience of the person that is 

doing the conversion. Range of one nibble (4 bits) is easy to achieve while full byte (8 bits) is 

little harder, although even 12-bit values are possible to be converted by human being without 

neither calculator or pen and paper at hand. 

Binary system is foundation for boolean algebra. In typical computer implementations there 

are usually four basic operations available as presented in the table [1.1]. It is worth to 

remember that XOR and NOT operations are reversible. XOR is reversible because 

 then . NOT operation is reversible because doubling negation 

cancels it so . 

Sometimes these four operations are displayed on truth tables that let easily and quickly 

find out the result of operation assuming known values of two arguments:  and . They are 

presented in tables [1.2], [1.3], [1.4], [1.5]. 

In computer logic operations usually are not done on single bits but whole bytes, words and 

so on. In such case bits are compared pairwise and the result has length equal to number of 

bits compared. 
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Table 1.1: Four basic boolean operations. 

Name Operation Symbol 

Conjunction AND  if 
otherwise 

Disjunction OR  if 
otherwise 

Exclusive or XOR  if 
otherwise 

Negation NOT  if otherwise 

Table 1.2: Conjunction truth table. 

AND 0 1 

0 0 0 

1 0 1 

Table 1.3: Disjunction truth table. 

OR 0 1 

0 0 1 

1 1 1 

Table 1.4: Exclusive disjunction truth table. 

XOR 0 1 

0 0 1 

1 1 0 

Table 1.5: Negation truth table. 

NEG 0 1 

1 0 

Hexadecimal Numbers 

Hexadecimal mode is also positional mode so it works exactly the same way as decimal and 

binary modes. The base in hexadecimal mode equals to 16 so 16 digits are necessary. First five 

letters from latin alphabet (A-F) expand standard decimal digits 0-9 making altogether 16 digits. 
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Capital and small letters might be used but should not be mixed in single number. In the table 

below they are presented with their decimal values: 

Hexadecimal number 0 1 2 3 4 5 6 7 … 

Decimal value 0 1 2 3 4 5 6 7 … 

Hexadecimal number … 8 9 A B C D E F 

Decimal value … 8 9 10 11 12 13 14 15 

Hexadecimal values are very useful and popular representation of integer numbers, memory 

addresses and other numbers in programming and computing machinery. One and only one 

of several suffixes and prefixes should be used to indicate that given number is hexadecimal 

value. Sometimes suffixes and prefixes are not present as it might be assumed or it is known 

that given number is hexadecimal. Examples: 

• 0x1245 – this is hexadecimal number prefixed with “0x” despite no letter is present in the 

number 

• 3f78h – this is hexadecimal number as it is suffixed with “h” letter at the end 

• $68000 – dollar sign was used to prefix hexadecimal values on some systems but it is 

rarely used nowadays as it might be confused with other meanings of the dollar sign in 

source code 

• C0DE – we may guess it is hexadecimal value because typical digits–letters are present 

Conversion from decimal mode to hexadecimal might be done in the same way as it is done 

between decimal and binary. In the following example a decimal value 40375 will be converted 

to its hexadecimal representation: 

Remainders are as follows: 7, 11, 13, 9 or when represented as hexadecimal digits they are: 7, 

B, D, 9. Therefore 40375d = 0x9db7. 

Now we try method based on subtractions knowing that , , 

. In every step we will look for the biggest value that can be subtracted that is also a product of 

the base mentioned earlier and term that is lesser or equal to 15 (0xf). 
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Integers 

The simplest, unsigned integers are simple binary representation of specific value just as 

it was discussed in section 1.1. Number of possible values and their ranges depends on bits 

used to represent the number. Characteristic data formats and their corresponding maximum 

unsigned numbers are shown in table 1.6. Limits of addressable space are theoretical 

maximums and do not consider caps such as: physical limitations of actual memory modules, 

hardware limitations of computer mainboard and software implementation introduced by 

operating systems. 

Table 1.6: Unsigned integers and their limits in typical data formats. 

Number of bits Maximum unsigned Remarks 

1 1 Bit 

4 15 Half-byte (nibble) 

8 255 Byte 

10 1023 Typical in ADC 

12 4095 Typical in ADC 

16 65535 Word; 64 kB addressable 

32 4294967295 Double-word; 4 GB addressable 

42 x86_64 Intel CPU addressable space – 4 TB 

48 x86_64 AMD CPU addressable space – 256 
TB 

64 Quad-word; 16 PB addressable 

Signed-magnitude Integers 

One bit may be designated to store information about the sign of value. If there is 0 on that 

bit then value is considered to be positive, otherwise it is negative. Limits of several exemplary 

data formats are given in table 1.7. 
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Table 1.7: Signed-magnitude integers and their limits in typical data formats. 

Number of bits Limits Remarks 

4 7 Half-byte (nibble) 

8 127 Byte 

10 511 Typical in ADC 

12 2047 Typical in ADC 

16 32767 Word 

32 2147483647 Double-word; 2 billions 

64 Quad-word; 9 quintillions 

With signed-magnitude integers there is significant problem of doubled zero as there are two 

possible values that represent “positive” (000..00000) and “negative” (1000..000) zeros. Sum of 

these two zeros results in “negative” zero. 

Furthermore sum of positive and negative values that have their absolutes equal is not that 

straightforward. For example lets sum signed-magnitude values of -5 and +5. Assuming that 

they are stored in 4-bit registers their representations are: 1101 and 0101, where first (most 

significant) bit represents sign. Direct sum in bit pairwise order starting at the least significant 

results in 0010 which is  that is not the correct answer. 

With signed-magnitude one needs to take sign bit into consideration first. If the bit is 

the same in both values then they should be added and their sign bit copied. If they have 

different sign bit then they should be subtracted and bit is copied from the absolutely larger 

value. This approach is complex and slow thus was superseded by one’s complement and two’s 

complement representations. 

One’s Complement and Two’s Complement 

In one’s complement to represent negative number its positive (absolute) binary representation 

is bitwise inverted with NOT operation. Therefore negative numbers in one’s complement can 

be recognized by 1 in the most significant bit. So  from previous example is still 0101 but 

is 1010. Summing them up results in 1111 that is one of two possible representations of zero. The 

zero in one’s complement is represented by either 0 on all bits so that it is  or 1 on all bits so 

it is . 

Problem of doubled zero is finally solved in two’s complement. In two’s complement zero has 

no sign because it is represented only by all bits set to 0. 

To convert negative (and only negative!) value from binary to two’s complement one has 

to simply add one to one’s complement of the value. Therefore  is still  in two’s 

complement. However,  = 1010 in one’s complement so it is 1011 in two’s complement. If we 

add these two two’s complement values: 0101 and 1011 the result is 10000 so it is lengthier than 
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original but in the basis all bits will be equal to zero. This additional bit might be indication of 

the result equal to zero. 

To convert two’s complement that is negative, so one which has the most significant bit set, 

back to binary representation both previous operations must be performed but in reversed 

order. So it is necessary to subtract one and invert all bits. For example all “ones” (11..11) is a 

negative value which after subtraction becomes (11..110), and after inversion it is 00..001 so we 

conclude that it represented  in decimal. 

Further examples are given in table 1.8. Interesting fact about two’s complement is that this 

format can represent less positive values than negative values by one. 

Two’s complement might look complicated on paper but is not an issue for computing 

machinery. It is an ultimate solution to all problems discussed above so it is commonly 

implemented in contemporary processors. 

Table 1.8: Some exemplary two’s complement values on 8-bit register. 

Value Two’s complement 

+127 01111111 

+32 00100000 

+15 00001111 

+3 00000011 

+2 00000010 

+1 00000001 

0 00000000 

-1 11111111 

-2 11111110 

-3 11111101 

-15 11110001 

-32 11100000 

-127 10000001 

-128 10000000 

Fixed-point and Floating-point Numbers 

Electronic circuitry and processors are capable of processing integer numbers quite efficiently. 

However, real numbers are a problem due to their possible high number of decimal places. The 

higher number of decimal places the larger is the precision with which the value needs to be 

stored and so more information it possesses. With increasing precision more bits are needed 

to store the real value. 

There are two approaches to store real numbers in computing machinery: fixed-point and 
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floating-point. First one has limited precision, an arbitrary number of decimal places and so 

its resolution is limited. Second method provides much higher resolutions and wider range 

of stored values but introduces an error as it is the best possible approximation with given 

number of bits used to store the floating point number. 

Fixed-point numbers 

Fixed-point number consists of two parts: integer and fractional. With given size of register 

some bits are used to store integer part and remaining ones are used to store fractional part. 

Integer part is stored as it was described in section 1.3. Bits in fractional part have base 2 but 

their exponents are negative. So there is , , . The series ends on 

, where  cannot be higher than number of bits in used register. Powers of 2 with 

exponent down to -8 are given in table 1.9. 

Table 1.9: Start of series of fractional parts in fixed-point mode. 

-1 

-2 

-3 

-4 

-5 

-6 

-7 

-8 

Fixed-point is an arbitrary data storage mode as programmers implementing it may choose 

how many bits should be used per each part. Example below presents fixed-point storage on 

8-bit register with 3 bits used to store integer part and 5 to store fractional part. Number that 

we would like to store in this “ ” format is . 

Converting decimal 5 to binary results in 101 and these bits will occupy upper part of 

the register (more significant bits). Now do repetitive subtractions, if they are possible. If 

subtraction was possible then corresponding fractional bit should be set. 
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So decimal . Remainder equals to  and 

this is the error introduced due to conversion. 

Conversion back is more straightforward: 

. Difference between 

original value and recovered one equals to remainder that we had to abandon during 

conversion from decimal to fixed-point. 

Floating-point numbers 

Floating-point number can represent highly varying range of values both very large and very 

small. Contemporary processors provide implementation of IEEE standard  that is well 

established description of floating-point number formats. 

Conversion between decimal value and its IEEE 754 representation is given by equation: 

where: 

•  – decimal value 

• s – one bit that represents sign 

• m – mantissa that is fractional part 

• b – base (radix) that in computer machinery usually is 2 

• e – exponent 

• x – maximum possible value of exponent (exponent bias) , where k is number 

of exponent bits. 

Range and precision depend on the number of bits alloted to mantissa and exponent. Some 

examples are shown in table 1.10. Effective, calculated exponent value E have to be within 

ranges presented in table 1.11. 

Table 1.10: Some IEEE 754 modes with base 2. 

Name Bits total Mantissa bits Exponent bits 

Half precision 16 10 5 

Single precision 32 23 8 

Double precision 64 52 11 

. 
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Table 1.11: Exponent limits in popular IEEE 754 formats. 

Name 

Half precision 30 -14 +15 

Single precision 254 -126 +127 

Double precision 2046 -1022 +1023 

Examples in half precision: 

Examples in single precision: 

If all bits of exponent are set to zero then it is a category of denormalized values. In 

that situation exponent used in computation has  value as given by table 1.11. Mantissa 

takes form of 0.m instead of regular 1.m hence there is no addition of one to the mantissa. 

Denormalized values are used to store extremely small numbers. Example of denormalized 

number: 

Some other compositions of bits also have special meaning: 

• +0 – all bits set to zero 

• -0 – all bits set to zero except of sign bit which is set to one 

• +Infinity – all exponent bits set to one, e.g.: 0 11111111 00000000000000000000000 

• -Infinity – all exponent bits set to one, e.g.: 1 11111111 00000000000000000000000 

• NaN – “Not a number” so result of operation such as division by zero is indicated by sign 

bit set to one, all exponent bits set to one, and at least one of mantissa bits set to one; 

e.g.: 1 11111111 00000000000000000000001 

Endianness 

Data of any kind in computer memory must be stored consistently and orderly. This order is 

known as endianness. Non-technical people also use endianness when they want to save date, 

which may have many formats, as for example: 

• 13th of December, 1981 

• December 13, 1981 
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Figure 1.1 
Comparison of 
big-endian and 
little-endian with 
one byte unit. 

• 1981-12-13 

Computer memory might be imagined as a series of data cells. Some microcontrollers enable to 

access single bits but usually bytes are the smallest units available. Second order data units like 

words, double-words, quad-words consist of more than one byte and these bytes are stored in 

computer memory in specific order. 

When big-endian is used then with increasing addresses bytes are stored starting from 

the least significant one (representing smaller values). In little endian it is otherwise so when 

memory is read byte by byte then data looks like bytes have reversed order. Little endian 

system is used in x86_64 architecture. These two endiannesses are shown on figure 1.1. 

It is also possible to have different unit than single byte. In such case big-endian storage will 

have no difference to one shown in figure 1.1. However, if unit is for example word (two bytes) 

and 0xd1cec0de is to be stored then in memory it will be present as: 0xc0de, 0xd1ce. If the unit 

were one byte it would be stored as: 0xde, 0xc0, 0xce, 0xd1. 
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2. Electronic Components 

Every time you turn on your new car, you’re turning 

on 20 microprocessors. 

ScottMcNealy 

In computing machinery there are two distinctive components: processors and memory. 

Instructions and data are held in memory to which the processor has access. Processor 

retrieves instructions from memory and executes them. Some instructions work on data that 

is also obtained from memory. Results are temporarily stored in processor “registers” and then 

transmitted to memory or some other circuitry. In this section various types of processors and 

computer memory types will be discussed. Methods of data transmission between chips will be 

also briefly analyzed. 

Processors 

Computational processor is highly integrated circuit (IC). Integrated circuits with more than 

1 million of transistors are categorized as Ultra-Large-Scale-of-Integration (ULSI) . Modern 

microprocessor is an example of such integrated circuit. It is a versatile but highly optimized 

and highly integrated chip used as a main component in Personal Computers (PC). 

 

Figure 2.1 Every two years number of transistors in CPU doubles according to 
empirical Moore’s Law. 
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Core computational block of processor is known as Arithmetic-Logic Unit (ALU). This block 

performs basic mathematical and logical operations on data that is usually provided from 

outside by a connection known as memory bus. 

Processor cannot work on its own but only in interaction with external circuits and 

electronic elements. These external parts that cooperate with processor may act as temporary 

or permanent data storage, sensors, actuators and other chips. 

Primary processor in the computer is easy to recognize and due to its complexity it is 

called Central Processing Unit or simply CPU. However, in single computer there are many 

specialized processors with different features and oriented for specific tasks. They work in 

parallel and only synchronize with other chips occasionally. For example there might be a chip 

that is controlling connection over Ethernet card and another one solely for Universal Serial 

Bus (USB) management. Every data storage unit such as hard disk, solid state disk, memory 

card reader, optical disk reader contains its own processor or processors. 

When many processors of the same type are coupled and work together in parallel to 

perform some heavy computations they constitute a multiprocessor system. Typically such 

system is designed for heavy computational tasks and may be labeled as supercomputer. 

However, when supercomputers are discussed it is worth to remember the Moore’s Law. 

It states that every year computational capability of processors is doubled. Therefore 

supercomputers from XXth century are comparable with todays smartwatches in terms of their 

computing efficiency. This development is shown in figure 2.1. 

Over the years a continuous progress in scale of integration was observed so current CPUs 

are multicore processors as they have many ALUs on single chip. It might be also observed that 

typical CPUs with multicore architecture resemble multiprocessor systems in terms of their 

functionality. 

Due to variety of applications and requirements of specific system we may distinguish 

different types of processors such as general purpose microprocessors, microcontrollers, 

video or audio processing accelerators, microcontrollers, and others. Now we will discuss 

details and distinctive features of these components and analyze some examples of their 

applications. 

Microprocessor 

This book is based on series of microprocessors designed by Intel that constitute x86 family. It 

is a long list of backward-compatible processors for personal computers that started with Intel 

8086 in year 1978. 

Other companies such as AMD also manufacture processors compatible with x86 

architecture. They exchange know-how, intellectual property (IP) and patents. Chips share 

common set of instructions, register names and other architectural features but they differ 

internally as every instruction is implemented inside the microprocessor in its internal 

microcode. This approach enables competitors to tackle encountered problems independently 
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so it stimulates progress. Thanks to common instruction set programs can be started 

immediately on other machine, with CPU from other manufacturer. For example lets take a 

stand-alone program that means it is not dependent on external libraries or operating system 

functions. If the program was compiled against 80386 CPU it can be started on original 

386 machine, on more advanced Intel Pentium and on modern AMD Ryzen. Obviously an 

application compiled with the use of modern features may not work properly or even will not 

start on older machine. 

32-bit machines that started with 80386 and lasted till Pentium 4 were developed between 

years 1985 – 2000. These generation of processors introduced many important features such 

as: memory protection and context switching (enabling multitasked operating systems), 

embedded coprocessor (also known as Floating Point Unit – FPU), internal cache memory, 

vector instructions (for parallel compuatational processing of large data sets) and pipelining 

(clever processing of many instructions at once). The biggest problem with these processors 

was their limited addressing space. They were able to access 4 GB of RAM as 

. In practice it was not possible to have that much memory available and 

operating systems limited addressable memory space to 3 GB or less even though more was 

installed physically. Example of late 32-bit processor based on x86 architecture is shown in 

figure 2.2. 

 

Figure 2.2: Exemplary x86 processors from the turn of XXth century with protective metal 
shield (AMD K6) and opened with the core exposed (AMD Duron). 

Limitations of x86 microarchitecture became obvious at the end of XXth century. Therefore 

there was a major breakthrough that was switch from 32-bit to 64-bit architecture. AMD 

was the first company that introduced 64-bit to x86 CPU with their AMD64 extension. 64-bit 

architecture means that basic CPU registers have size of 64 bits. With larger registers it 

becomes possible to: 

• work on bigger integer numbers (in absolute terms), 

• work with higer precision real numbers, 
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• address more memory. 

Another architectural breakthrough was the consolidation of many cores in single processor. 

Every core might have capability of hyperthreading so that is works as even more (usually two) 

traditional processors. Therefore modern CPU can be viewed as many parallel CPUs and so it 

is presented in figure 2.3. 

 

Figure 2.3 Simplified block diagram of modern 
multicore microprocessor. 

To observe it on Linux operating system user may see the contents of special, textual file 

/proc/cpuinfo where interesting information about system microprocessor can be found. 

In this file every hyperthreaded core is counted as “processor” starting from 0. Usually every 

of these processors has the same description. In this file information about processor 

manufacturer (“vendor”), its model name, frequency, cache size and very detailed information 

coded in “flags” can be found as well. Another way to find number of CPU is to start a command 

line program nproc which simply prints number of CPUs available. More advanced and detailed 

information about PC can be retrieved with dmidecode program that also is started from 

command line and presents its output in simple, textual form. Program might reveal sensitive 

information about the machine therefore it requires root privileges to start. Similar features 

and programs should be available in other operating systems. 
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Microcontroller 

Microcontrollers (MCU) share some features with microprocessors but their design goals and 

purposes are completely different. Microcontroller should have basic components that we 

already discussed with microprocessor: ALU and bus or buses by which it retrieves data from 

memory. But here starts the main difference as microprocessor internal memory is just a cache 

that speeds up instruction processing. In microcontroller there is internal memory that is the 

main memory for the device. There might be external memory of some kind although usually 

microcontroller-based system relies only on internal memory of MCU. This internal memory 

has distinctive part in which the program and constant data is stored and another one for 

the data that is being processed. It is unlike microprocessors where the external memory is 

populated both with program to execute and data which is processed by the program. 

This is the key difference between microcontrollers and microprocessors that originates in 

two types of architecture. First type, known as von Neumann architecture has single type of 

memory unit and so it uses only one data bus. Even if the data bus has separate lines to transfer 

memory address, to control the transmission (e.g. clocking) and the data itself it is single data 

bus. Second type of architecture has two memory types, one for data and another for the 

program. Therefore it needs to have two data buses with all necessary lines. This is known as 

Harvard architecture. Both types are compared in figure 2.4. 

 

Figure 2.4: Processor architectures: a) von Neumann, b) Harvard. 

Von Neumann architecture is typical for microprocessor-based systems and it is optimized for 

large non-volatile memory units. Design is simplified and the system is more versatile. On the 

other hand Harvard architecture to which microcontrollers incline is optimized for speed as 

both instructions of the program and data can be retrieved at the same time. Nowadays the 
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borderline is not that sharp as both microcontrollers and microprocessors architectures are 

more complex and advanced often benefiting from both approaches. 

Microcontrollers are used in many electronic and embedded devices. Due to large quantity 

in which they are used the manufacturers design and sell series of devices that share some 

general set of features but differ in details such as program storage memory size (EEPROM), 

data memory (RAM) and package (chip physical shape and number of connections). To make 

this landscape even more complicated we should observe that microcontrollers might have 

numerous additional features such as: 

• analog-to-digital converters (ADC), 

• digital-to-analog converters (DAC), 

• comparators, 

• PWM signal generators (for motor control), 

• timers, 

• general purpose input-output ports (GPIO), 

• communication control (e.g.: SPI, I2C, UART), 

• display control. 

Not all microcontrollers provide all of these features and some might be specialized in aspects 

not mentioned above. They also normally differ in number of lines (connections) providing 

specific feature. For example one type may have 2 ADC lines while the other from the series 

might have 3 ADC lines. Same chip might be packaged with for example 64 pins, or 100 pins, 

or 144 pins and so on, thus making it significant difference in number of GPIO lines and 

other lines available at the same time. The choice of individual microcontroller is therefore 

often considered to be very troublesome process with significant consequences for design of 

electronic device. 
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Figure 2.5: Various development boards with different processor architectures. From left to right: 8-bit 
ATmega32u4 by Microchip (clone of “Arduino”), 16-bit MSP430FR6989 from Texas Instruments 
(“Launchpad”), 32-bit STM32L073RZ from STMicroelectronics (“Nucleo”). 

Microcontrollers that are available in the market come with variety of “bitness” so there are 

8-bit, 16-bit, 32-bit and 64-bit microcontrollers to choose from. These different architectures 

are shown on photograph in figure 2.5. 

Not always the choice of more bits is better as price is another factor that is correlated 

with “bitness”. For example application of 8-bit microcontroller is good enough to control 

simple line of Christmas lights. Popular Arduino Uno board is based on Microchip ATmega328 

microcontroller that is 8-bit chip. Example of 16-bit microcontroller family are Texas 

Instruments MSP430 chips which can be found on inexpensive “Launchpad” development 

boards. On the other hand it might be necessary to use 32-bit or even 64-bit microcontroller 

with FPU in sophisticated measurement device. In such case one may look for chips with 

ARM core such as STMicroelectronics STM32 series. They are commercially available for 

development purposes on inexpensive boards named Nucleo or Discovery. 

Specialized processors 

Microprocessors are essential part of desktop computers and laptops. Microcontrollers are 

common in handheld devices such as mobile phones, e-book readers, remote TV controllers 

and numerous embedded systems. Their versatility makes them primary choice for countless 

electronic products. However, there are situations where it is worth to sacrifice flexibility and 

gain efficiency to solve one particular task. For that purposes there are specialized processors 

such as Graphics Processing Unit (GPU) or Digital Signal Processors (DSP) and more which 
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can perform just one type of task but much more efficiently than microprocessor or 

microcontroller could do. 

Graphics Processing Unit (GPU) 

GPU was formerly called “graphics accelerator” as this chip accelerates calculations performed 

in graphically demanding applications such as computer games or high-quality video display. 

Such chip might be analysed as powerful link between computer screen and CPU and computer 

memory. 

Figure 2.6: Block diagram of computer graphics card with GPU. 

Now we will analyze computer video card based on GPU. Its block diagram is shown in 

figure 2.6. On one side it has Display Interface (DIF) unit which can generate video signals in 

specific standards (VGA, HDMI, DisplayPort and so on). When high resolution screens (HDTV, 

4k, 6k) are in use then there is more data (more pixels) to be pushed through this channel so 

this link must be reliable (often synchronous) and efficient. Data can be provided to DIF from 

several blocks that are present in the GPU chip such as: 

• generic Graphics Memory Controller (GMC) – simple graphics possibly with direct access 

to computer RAM but without advanced acceleration, 

• Video Processing Unit (VPU) – part of GPU with optimized and implemented in hardware 

media codecs such as MPEG2, H.264, Theora, VP8 and so on, 
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• Graphics and Compute Array (GCA) – 3D engine that provides acceleration to: geometry 

calculations, rendering, texture mapping, shaders, more specialized graphical effects 

(antialiasing, SSAO, bloom, and other post-processing effects) and realistic physics of 

rendered objects. 

Furthermore GPU are backward-compatible with older graphic controllers and provide 

primitive VGA BIOS that can be observed at work during computer boot up process. Finally 

there must be reliable Power Management Unit (PMU) as GPU cards require a lot of power – 

dozens of watts, that sometimes is more than the main CPU consumes. In such case often a 

separate and direct power connection is needed between GPU card and main power supply of 

the computer. 

High efficiency of GPU would be wasted if it was not adequately associated with other 

components, particularly CPU and computer RAM memory. Therefore in modern PC the GPU 

is connected to CPU the same way the RAM is – through so called Northbridge that is very fast 

memory controller. Connection between Northbridge and GPU is known as Bus Interface. It is 

in the standard of PCI Express (PCIe) nowadays. On PCIe lines data transmission is clocked at 

very high frequency. For example version 4 of PCIe standard that was presented in 2017 allows 

throughput up to 16 Gbps per line that is about 2 GB/s per line. Graphic cards with GPU are 

usually connected over PCIe 16 which means that there are 16 lines working synchronously 

providing parallel transmissions so that it is possible to have throughput between GPU and 

RAM up to 64 GB/s. Version 5.0 of the PCIe standard is about to appear in 2019 and double 

these results. 

Every year there are about 400 millions of GPU shipped to the market. 

Digital Signal Processor (DSP) 

In previous sections we focused on CPU and GPU because they are cornerstones for PC 

computers which are ubiquitous and so easily available for learning purposes. However, 

efficient processing of video data is not limited to GPU which in fact are relatively expensive 

solution. Similar but more versatile functionality might be gained with Digital Signal 

Processors. DSP have to deal with a lot of data in real-time so they are usually built in the 

Harvard architecture or heavily modified von Neumann architecture. 

Number of 400 millions of GPU shipped to market every year might sound impressive but it is 

dwarfed by number of DSP shipped at the same time. The cause of that is simple: GPUs are used 

mainly in PC market while need for DSP is far more reaching. They are used in mobile phones, 

audio and video systems including TV screens, industrial machine vision, driver assistance 

systems, military equipment such as missile guiding systems and radars, and in many more 

applications. 

Major companies active in the area of DSP processors are: 

• Texas Instruments – manufacturing TMS320 series processors since year 1983, 
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• Analog Devices – manufacturing SHARC series processors since 1994 and Blackfin series 

processors since year 2000, 

• Qualcomm – well known in the field of mobile phones where their core named Hexagon 

works in the background and is responsible for all “serious” tasks like hardware control 

including RF communication, 

Figure 2.7: Graphical comparison of 
arithmetics: a) wraparound, b) saturated. 

Characteristic feature of DSP processors is saturated arithmetic. First we should understand 

that any register in any type of microprocessor architecture is limited by how large or how 

small is the value that can be stored in it with given precision. Regular processors work in 

wraparound arithmetic in which if the result of mathematical operation exceeds these limits 

then a wraparound occurs. In that situation very big result might be stored as very small value 

and vice versa. If we would apply this approach to processing of music or video data results 

would be unacceptable distortions. On regular processor it is possible to proactively check 

by terms of software function if the result exceeds given limits and take action accordingly. 

But such procedure implemented in software would be hardly efficient and problematic for 

real-time processing of audio-video data stream in high resolution. Therefore DSP processors 

employ a hardware implementation of result control and if the result is about to exceed the 

limits then extreme value is taken as the result. Hence a wraparound never occurs. 

Idea of saturated arithmetic is presented graphically in the figure 2.7. There is a register of 

some size and two values: A and B which are added, subtracted and multiplied. As you can 

see the results in group a) do not make much sense as they were obtained with wraparound 
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arithmetic. Section b) presents saturated arithmetic that seems to be more natural in 

processing of multimedia data. 

System-on-Chip (SoC) 

System on Chip is more complex structure than single core or multicore processor. This kind 

of chip integrates in one IC more cores that often are of different architectures. Despite their 

differences these cores are tightly coupled and each of them is doing specific task for which it 

was optimized to improve overall performance. Examples of such chips are: 

• Texas Instruments DaVinci – used in industrial and surveillance cameras has ARM core 

associated with TMS320 core, 

• Samsung Exynos – mostly for mobile phones or tablets includes ARM Cortex core 

possibly as secondary to a custom CPU, Mali GPU, Image Signal Processor (ISP) to control 

mobile phone camera, GSM modem, and GPS receiver, 

• Qualcomm Snapdragon – includes many cores: ARM Cortex core, Hexagon DSP, Adreno 

GPU, ISP, GSM modem with RF frontend, short-range connectivity cores, GPS receiver, 

and battery charging controller, 

Some of the cores existing in SoCs and listed above were discussed in previous sections while 

many others are specific for single purpose or task-related. 

The biggest challenge in creating SoC is to efficiently interconnect all these cores. For that 

purpose a bus might be designed that is communication system for data transfer between 

components in computer architecture. Idea of such system is shown in figure 2.8. 

Examples of bus architectures specific for SoC are: 

• Advanced Microcontroller Bus Architecture (AMBA) is highly popular and royalty-free 

standard by ARM, 

• Wishbone Bus by Silicore Corporation that is exceptional because it is free and open (not 

just royalty-free) hardware solution, 

• Altera Avalon more advanced bus architecture with slave-side arbitration than enables 

the coexistence of many bus masters, 

• CoreConnect by IBM (obsolete). 
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Figure 2.8: Block diagram of System-on-Chip 
architecture. 

However, as there are more cores in single chip and many of these cores need to communicate 

with more than one another core (many-to-many) the interconnectivity requires more links 

between these chips. Therefore it becomes more challenging to outline adequate bus that is 

not occupying too much of chip physical area and that does not impact parasitic capacities. 

Therefore an alternative approach gained some popularity in recent years. This concept is 

named Network on Chip (NoC). In this approach cores in SoC communicate in network-like 

manner thanks to a routing controller that is another core embedded inside the chip. In this 

method cores are not connected to each other any more but through network managed by the 

router. However, to have positive outcome of applying NoC requires implementation of routing 

algorithms that have real-time performance to avoid bottlenecks and blocking (starving) of the 

on-chip network by cores that are more “greedy” in terms of communication. 

Programmable Logic Processors 

Processors discussed above might be powerful, efficient and popular in many applications. 

But they share one trait that sometimes is not desirable. They may be programmed and 

suit different functions but their internal structure is designed once and for all. In some 

applications it would be beneficial if the processor chip was more flexible. 

Now we will discuss example of such situation in which it might be desirable or even 

necessary to change the internal structure of the chip after some time of its usage. Let 

us imagine that our company is designing and manufacturing mainboards for aircraft radar 

system. On the board there is specialized processor that implements in hardware a set of 

specific and sophisticated procedures of digital signal processing characteristic only for radar 

systems. Hardware implementation is necessary due to real-time and throughput constraints 

that could not be met if the solution was provided in purely software or hybrid manner. The 
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board must be reliable and robust so the company spent hefty sum of money to design and 

test it. Then it positively went through costly and time-consuming verification of compliance 

with governmental and military regulations. Our company won with competition and produced 

hundreds of such radars for military client. After some time a serious flaw was discovered 

in the processor. If it were just a regular processor then radars would be decommissioned 

and our company probably would go bankrupt. But our engineers were farsighted and used 

a programmable logic processor so we can change (reprogram) the hardware structure of the 

processor without even physical contact with the board or the processor itself. 

Programmable logic processors are gaining popularity in mission-critical and safety-critical 

systems such as in automotive industry, defense industry, and space industry. They are also 

compelling way to verify new concepts in hardware design. 

Field Programmable Gate Array (FPGA) 

FPGA are logic chips that are intended to be programmable in the “field”. The chip behavior 

may be changed also in remote location for example due to shift in equipment paradigm or 

modification of requirements that were not know during device deployment. Some FPGA have 

a feature which lets them to have part of them working while some other part is being updated. 

If we add redundancy to this then we have highly reliable yet adaptable solution for extreme 

requirements, like in military, telecommunications or space industry. Moreover FPGA provide 

and are considered as secure way to implement hardware. 

FPGA are highly adaptable and may work in the place of CPU, MCU, GPU or other – more 

specialized processor. However, they are built as gate arrays therefore are more applicable to 

digital systems than analog systems. 

FPGA chips provide low-latency signal propagation as they are naturally inclined for highly 

parallel mathematical operations. Therefore they are suitable for real-time data processing 

such as in experimental radio transceivers (e.g. Software Defined Radio, SDR), GSM Base 

Station Transceivers, video or radar systems. 

Usually they may be supplied at low voltages such as 0,8 V  1,2 V. That is also quite desired 

feature in power-efficient applications where dozens or more of FPGA chips are orchestrated 

to work together. 

FPGA internal structure is based on Configurable Logic Blocks (CLB). These blocks have 

many programmable internal connections. Another key idea are Look-Up Tables (LUTs) 

complemented with flip-flops and multiplexers. FPGA might be enhanced with non-

programmable parts such as: 

• internal memory blocks (volatile RAM), 

• memory controllers for external memory management, 

• Phase-Locked Loops (PLL) to generate highly stable high frequency signals such as clock 

signal, 

• MCU core such as ARM Cortex for more ordinary operations. 
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Figure 2.9: Exemplary FPGA development board with Altera chip. 

Almost whole of FPGA market is occupied by four manufacturers: Xilinx which has more than 

half of the market share, Altera with about one-third, followed by Microsemi and Lattice . 

Similarly to MCU development boards there are also development boards for FPGA. Example of 

such board with Altera chip is shown in figure 2.9. 

To program FPGA a Hardware Description Language (HDL) is used. There are two main 

flavors of HDL: VHDL and Verilog. 

From the financial point of view FPGA have low value of NRE (Non-recurring engineering) 

therefore are easy to start development with them. But the cost of mass production devices 

using FPGA is steep as it increases proportionally to number of chips used. From this point 

of view there are better solutions. Therefore FPGA are often used for R&D and then design is 

reapplied to other chips such as Application Specific Integrated Circuit (ASIC). 

Usually FPGA do not have ROM to store their program. Therefore their setup must be 

provided from external device or chip each time the FPGA is booted up. It might be a problem 

for a mature device that is massively distributed and not supposed to have significant changes. 

With such requirements perhaps another kind of programmable logic device should be taken 

into account. 

Complex Programmable Logic Device (CPLD) 

CPLD share many traits with FPGA, although they are fundamentally different. CPLD may have 
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tens of thousands programmable logic gates while FPGA may have millions of them. Therefore 

CPLD might be a cheaper solution to implement simpler circuits. 

CPLD starts instantly after being boot up due to fact that it has internal ROM to store the 

program contrary to FPGA which needs to acquire its configuration and that causes delay 

in start time. Furthermore this downloading process which happens in FPGA-based circuits 

might be analyzed hence the device is more vulnerable to intellectual property infringement. 

Consequently CPLD are considered to be more secure than FPGA although the manufacturers 

of the latter kind of chips are working hard to provide safeguards. 

On the other hand the feature of on-the-fly reprogramming available in many FPGA that was 

discussed in previous section is not available with CPLD. It might be reprogrammed but for 

that procedure it must be powered down. There are systems like aircraft radar which cannot 

be powered down yet might require occasional updates. 

There are applications where one may choose between FPGA or CPLD. However, there 

is no restriction to use them both in the same product or even circuit board. For example 

CPLD might be engaged more during boot-up process to enable basic features of the device 

immediately after power up, and it may help to start FPGA, which will lauch more complex 

processing later on. 

Memory 

Two types of memory for computing machinery might be distinguished: volatile and non-

volatile. First type requires to be constantly supplied with power to hold the data. Once the 

power is turned off such memory chip “forgets” all data very quickly. Therefore it is used 

for temporary storage of processed information that is obtained from source of information 

or generated (computed) by programs which run on processor. Now we will discuss volatile 

memory components and briefly analyze components that can store data in non-volatile way. 

Volatile memory 

This type of memory is more commonly known as random-access memory (RAM). There are 

two types of RAM: static and dynamic. 

Static RAM (SRAM) is more expensive than dynamic RAM (DRAM) but also it is faster and 

is characterized with less power consumption. By “faster” we understand that time to retrieve 

and change the state of single memory cell is shorter – up to dozen of nanoseconds. 

Thanks to these features SRAM is used inside more powerful microprocessors for the cache. 

Cache is build of several layers where lower levels are closer to CPU core. The closer to core 

the layer is the faster is access to its contents. On the other hand upper cache layers are larger 

and may reach size of several megabytes (MB). Lower layers of cache are per-core while upper 
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layers might be shared among two or more cores. Naturally new designs of microprocessors 

tend to have more and more cache memory thanks to improvements in manufacturing process. 

When CPU is about to execute program instructions or process some data at first it is trying 

to get them from cache level one – L1. If the necessary data is not there then CPU is trying to 

find them in cache level two – L2, then level three – L3 and so on. Eventually the sought for 

code may or may be not found in the available cache layers so that CPU has to obtain the code 

and data from external memory that is usually of much slower DRAM type. 

 

Figure 2.10: Small Outline Dual In-Line Memory Module (SO-DIMM). 

The main trait of DRAM is that it is cheaper in production than SRAM. Moreover it is also 

“densier” so more data can be stored per physical area of chip. Therefore chips come in larger 

sizes measured in gigabytes (GB). Several chips form a small circuit board that is plugged into 

the computer mainboard. Photograph of such “memory stick” is shown in figure 2.10. 

Programmable Memory 

Non-volatile media storage discussed above are very common but unfortunately are not very 

efficient in terms of throughput. They have data transmission interfaces that are their 

bottlenecks. However, in electronics industry there is a need for non-volatile data storage that 

has as low latency as possible. 

One-time Programmable ROM (PROM) was introduced in 1950s. The chip was programmed 

once with relatively high voltage – dozens of volts that changed the state of fuse built of 

semiconductor layers. This One-Time Programmable (OTP) trait is important even nowadays as 

it provides important security feature disabling tampering with the device after it was delivered 

to the customer. 
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Researchers at Intel investigated failures in PROM chips which lead them to conclusion that 

UV light might erase gate states. Thanks to that an idea of Erasable Programmable Read-Only 

Memory (EPROM) appeared and stayed very popular till the end of XXth century. These chips 

were often used to store basic embedded software known as BIOS in PC computers. 

In 1970s Japanese national research institute presented Electrically Erasable Programmable 

Read-Only Memory (EEPROM) which simplified chip programming a lot. EEPROMs are based 

on floating-gate MOSFET transistors and making programming effort all-electric, without the 

need for complicated procedure with UV light, paved the way for modern MCUs. Actually 

modern electronics could not exist without EEPROM technology. EEPROM is a type of memory 

that can be rewritten electrically many times and preserves stored data even after power down. 

When chip is again powered up the stored code and data are available immediately. 

As computer efficiency improved so did requirements for latency of EEPROMs increased 

over time also. In 1980s Toshiba answered these calls and presented flash memory that is 

popular nowadays in ubiquitous USB flash drives. There are two types of flash memory chips: 

• based on NOR gate 

• based on NAND gate 

Table: 2.1: Comparison of NOR and NAND flash 
memory. 

Feature NOR flash NAND flash 

Cell size Larger Smaller 

Read speed Faster Slower 

Erase and write speed Slower Faster 

Capacity Smaller Larger 

Cost Higher Lower 

They are compared in table 2.1 presented here. From the fact that NOR flash has larger cells 

one can deduce their faster read speed, lower write speed, smaller capacity and higher cost. 

NAND flash with their smaller cells are like opposite. 

Data storage media 

Non-volatile memory might take various forms: electronic chips, magnetic disks or tapes, and 

optical disks. Picture of various examples of storage media is shown in figure 2.11. 
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Figure: 2.11: Various types of data storage media. Description in text. 

In upper left corner there is Compact Flash card (with white-blue sticker on it) having capacity 

of 2 GB. Right to it there is tiny, black Micro SD Card with capacity of 8 GB. Next to it there is 

handy “pendrive” with popular USB connector also providing 8 GB of space. 

Hard Disk Drive (HDD) is shown below memory cards. This one was made in technology of 

rotating plates that still has some popularity in cheaper disks. Contemporary realizations are 

using solid state chips instead of rotating planes thus are known as Solid State Disks (SSD). HDD 

and SSD have complex but fast interface to PC mainboard. Formerly it was in IDE standard with 

parallel data lines while nowadays serial ATA (sATA) interface is more popular thanks to higher 

throughput. Popular 3.5 inch form factor that is presented in the figure 2.11 is common for HDD 

and SSD too. There are also 2.5 inch disks that are more popular in laptop computers where 

small size is more important than capacity. The disk shown on the photo has capacity of 1 TB 

(terabyte). In the same form factor a wide range of capacities can be found up to several TB. 

Historically early disks of this format had capacities in the range starting with single megabytes 

so their sizes might be compared with todays memory cards. 

Top-right corner is occupied with Compact Disk (CD) that is example of optical storage. It 

provided capacity of about 650-700 MB. CD is predecessor of more modern DVD and Blu-ray 
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disks that have typical capacity equal to 4.7 GB and 25 GB respectively. Development of DVD 

and Blu-ray technologies improved capacities in both standards but nowadays popularity of 

optical media storage is in decline due to increased adoption of broadband Internet access. 

Most of optical media enables only single write for permanent storage but there also are 

rewritable disks such as CD-RW or DVD-RAM. 

Last row is occupied with quite archaic storage media. In bottom left corner there is a 

magnetic tape for data archiving. It has capacity of 4 GB or 8 GB with “densier” saving. 3.5 

inch floppy disk having 1.44 MB capacity is shown in the middle of bottom corner. It became 

popular in late XXth century as its space was large enough to store a computer game or some 

application. Operating systems at that time were much smaller than nowadays and a handful 

of floppy disks was enough to distribute their whole suite. Another format was popular before 

3.5 inch floppy disks conquered the market. It was 5.25 inch floppy disk which is shown in the 

bottom-right corner of the figure 2.11. It was possible to record data on both sides of the 5.25 

disk where one side provides “massive” capacity of about 200 kB. Yes – less than 200 kilobytes 

was enough to store program or game for 8-bit microcomputer or PC in 1980s! 

Magnetic and optical data storage are beyond scope of this book so they will not be discussed 

any further. 
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3. Common Wired Link Standards 

If you think of standardization as the best that you 

know today, but which is to be improved tomorrow; 

you get somewhere. 

Henry Ford 

Interfaces that can be found in electronic components might be separated into two groups: 

• parallel interfaces, 

• serial interfaces. 

In parallel interfaces there are many lines over which data is transferred simultaneously. 

Intuitively the more lines the higher the throughput might be . Parallel approach works well if 

properly applied. But there are issues that appear with increasing speed of transmission. Firstly 

it is lines synchronization which is a problem that is proportional to data transmission clock 

rate. Secondly higher frequencies mean shorter wavelengths so even short unshielded wire or 

copper path on PCB might become an antenna that transmits signals without control. These 

signals might cause electromagnetic compatibility problems such as interference with other 

lines and lines intermodulation. 

Parallel interfaces were once used for communication with printers – famous LPT port in 

PC computers. Other area of parallel data transmission domination was communication with 

hard disks. There were two noteworthy standards: Small Computer Systems Interface (SCSI) 

and Advanced Technology Attachment (ATA). SCSI was available in high-end computers such 

as servers and in its early days was only parallel interface. But problems with cabling led 

engineers to modify this standard and make it Serial Attached SCSI better known as SAS, that 

was also targeted at servers. Meanwhile Parallel ATA standard which was designed for typical 

PC computers went similar way of evolution and became a serial interface well known today as 

SATA. 

Microprocessors do not provide sophisticated interfacing and cannot communicate with 

external chips on their own. That is why there are “north bridge” and “south bridge”, and other 

chips on the PC computer mainboards. Some of these chips might be MCUs or MCU-based 

Application-Specific Integrated Circuits (ASICs) which do have implementation of specific 

hardware interfaces. In next sections the four most common standards of communication that 

are widely supported by microcontrollers will be briefly discussed. 

Simple serial connections 

Discussion of serial connection is often started with RS-232 standard that was developed 

in 1962. It is prominant for being popular for almost five decades! Operational industrial, 
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scientific and computer networks equipment which employs this interface might be found 

even nowadays. 

Figure 3.1: RS-232 connector (DB-9) with its lines described. 

Standard originated with many flow control lines and relatively high bipolar voltages: 

while up to  was considered as possible. Over the years voltages used in practice were 

lowered to ranges like  or . Furthermore some control lines were practically removed 

as considered to be not necessary any more due to the fact that more and more transmission 

control was done in specialized integrated circuits or in the software layer. RS-232 connector 

with lines described is shown in figure 3.1. 

RS-232 standard spawned more rigid versions dedicated to industrial applications known as 

RS-422 and RS-485. On the other hand it was observed that proper handling of flow control 

makes it possible to minimize the number of lines to just two of them, known as RX and 

TX where former one is for data reception and latter one is for transmission. RXTX pair is 

probably the most common solution for communication that is available in microcontrollers. 

For example Arduino boards which are popular among hobbyists and experimenters, provide 

these two lines on their PCB pinout as standard. Behind the simple two-line connection there 

is a serial communication controller embedded inside the microcontroller chip that usually 

provides a buffer for transmitted data. The controller might provide asynchronous (UART) 

or synchronous (USART) transmission. If traditional  voltage is needed then external 

controller like MAX232 is used to convert low voltages to and from the microcontroller side. 

One could consider that two lines for two-way communication is the limit of optimization. 

However, there is 1-wire standard that operates on single data line and reference ground line. 

So in fact there must be at least two lines but the one for transmission might provide positive 

voltage to the end device simultaneously with transmission. Ground line might be a shield of 

cable, like in coaxial cable. Hence with thin cable it is possible both to power up the end device 

and have communication with it. Thanks to its simplicity the 1-wire is often used in embedded 
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applications which need to have a remote sensor. Broadly known example of 1-wire sensor is 

Maxim DS18B20 temperature sensor. 

Common drawback for simple serial connections is their low speed. Throughput up to 

115200 bauds is theoretically available while many devices work with more typical transmission 

speeds such as 19200 or 9600 bauds. These can be expressed as  kB/s,  kB/s, and 

 kB/s respectively. Such channel capacity might be suitable for simple control protocols or 

basic monitoring but will not be enough for more demanding applications like digital media 

transmission. 

Important fact about the RS-232 standard and its successors is that they require no fees to 

any organization. They are broadly used, well documented, have low learning curve, and are 

repeatedly implemented in integrated circuits. Therefore these standards or de facto standards 

still might be considered as interesting option for hardware development especially in the early 

stage of research. 

Universal Serial Bus (USB) 

USB is natural choice for popular consumer electronics because it is perceived as simple to use 

by everyday users. USB standard version 1.1 was established in 1998. Then it evolved in terms 

of data throughput, power supply requirements and complexity. Fortunately for consumers all 

its intricacy is well hidden within hardware specification and necessary software drivers. At 

time of writing this book version 4 is under development which should be presented in 2019. 

Technical differences between USB versions are shown in table 3.1. 

Table 3.1: Comparison and evolvement of USB standard. Please note 
that transmission throughput is given in megabytes per second. 

Feature USB 1.1 USB 2.0 USB 3.1 USB 3.2 

Maximum throughput [MB/s] 1.5 60 625 2500 

Effective throughput [MB/s] 1.5 ~30 ~500 ~1800 

Supplied current [mA] 500 500 900 900 

Devices on bus 

USB can connect physically separate devices but is limited by the maximum length of the cable. 

Theoretical maximum length of USB 2.0 cable is 5 meters while for USB 3.0 due to higher data 

rate it is even shorter limited to 3 meters. In practice, with good active cable a distance of 

several or dozen of meters might be achieved. To extend it further one may use USB hub with 

which 30 meters range is possible. There are also USB over Ethernet extenders thanks to which 

distance is limited by Ethernet specification that is about 100 meters. 

Table [tab:usb] shows typical implementations of USB standard and their capability to work 

as power supply for connected devices . There are however special dedicated charging ports, 

which can provide higher currents and voltages than normal USB ports. Such USB 2.0 port can 
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provide 1.5 A while USB 3.0 port of this kind can provide 1.8 A. The drawback is that such ports 

are only for power supply and do not let data transmission. Furthermore there are powered 

USB ports which can provide 6 A at voltages 12 V and 24 V so maximum power of 144 W. 

The basic version of USB connector has only four lines: 

• VBUS – power supply, 5V at up to 900 mA 

• D- – data transmission differential line 

• D+ – data transmission differential line 

• GND – ground (reference) 

 

Figure 3.2: Popular USB 2.0 connectors – from left to right: 
Type A, Type B mini, Type B micro. 

USB 3.0 is physically backward compatible with 2.0 as 2.0 is backward compatible with 1.0. It 

means that older device might be connected through new connector type although it will not 

benefit from additional features provided by contemporary version of the standard. Visually 

USB 3.0 might be distinguished from 2.0 by blue elements of the sockets and plugs. USB 

3.0 may have additional lines for data transmission with transmit (SSTX) and receive (SSRX) 

are separated. Both of these are still differential lines so it makes four additional lines for 

transmission totally. USB 3.0 has also additional GND reference line. USB 3.2 uses “dual lane” 

approach doubling its lines so that there are 24 pins in the connector. Plugs employing this 

version of standard are easy to recognize as they obviously do not fit with old type sockets. 

USB standard is known for having confusingly large number of connector types. Nowadays 

the most popular connectors are Type-A, Mini-B and Micro-B which are shown on figure 3.2. 

First one is used for example in memory sticks (pendrives) while two others are popular in 

mobile phones and cameras where smaller footprint is favored. USB 3.0 and so its connectors 

are gaining popularity slowly as there is not so high demand for it on consumer market. It is 

used in Point-of-Sale terminals, high-speed FPGA boards such as in Software Defined Radio 
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and mass storage devices. Usage of type-C connectors for USB 3.x is on the rise, especially in 

laptop computers, where it may be used for power charging thanks to additional lines. 

Versioning of USB standard might be considered hard to follow by everyday consumers. 

Therefore there are also brand names of USB versions as shown in table 3.2. 

Table 3.2: Brand names of USB 
versions. 

USB versions Brand name 

0.9 – 1.1 FullSpeed 

2.0 Hi-Speed 

3.0 SuperSpeed 

3.1 – 3.2 SuperSpeed+ 

4 Thunderbolt3 (TBA) 

There are two basic types of USB products: device and host. Host plays role of the bus controller 

to which device-type units connect. This limits functionality of equipment hence since 2001 

USB On-The-Go (OTG) is gaining popularity. OTG device can switch back and forth between 

device and host role, depending on circumstances. For example a smartphone can be a device if 

connected to PC computer and then it may be a host if it has external keyboard connected. 

USB standard is supported by many microcontrollers in 8-, 16-, 32-bits architectures. Some 

MCUs given here should not prevent reader from searching for chip that best suits specific 

project requirements. One example is 8-bit Microchip ATmega32U4, prominent for being the 

core of several Arduino boards such as Arduino Leondardo. This chip supports behaviour of 

FullSpeed device and bus controller. It is available in beginner-friendly easy to solder TQFP 

package with only 44 pins. Microchips also manufactures 32-bit PIC32MX family of MCUs 

among which many chips can work as FullSpeed device, host and OTG. Many chips in this series 

are also available in TQFP package. STMicroelectronics is also manufacturing many MCUs with 

USB support in their STM32 series. Another example of chips which support USB standard 

are ARM Cortex-based Gecko MCUs. It is hardly possible to discuss all MCUs providing USB 

support therefore reader is advised to visit manufacturer’s websites or use tools that support 

the choice such as STM32CubeMX. 

Serial Peripheral Interface (SPI) 

SPI is another serial interface notable in development of microcontroller-based systems. It 

has long tradition as it was developed in 1980 by Motorola and since then it became de facto 

industrial standard. Nowadays it is as omnipresent in microcontroller architectures as the USB 

is in the PC computers. Firstly because it is relatively simple to use. Secondly because there are 

lots of external components such as: 
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• sensors, 

• ADC and DAC chips, 

• flash data storage, 

• memory chips, 

• RTC chips 

• displays for embedded systems. 

These simple components often employ the SPI as the main or the only way for 

communication. Due to the popularity of this standard it is hard to find MCU which does not 

provide at least single SPI channel while quite often there are more available. 

 

Figure 3.3: SPI communication between master and slave devices. 

From architectural point of view SPI is digital, serial and synchronous communication 

interface. Data is transmitted in stream-like mode in both directions at the same time so 

it looks more like data exchange. Mechanism is based on shift registers as it is shown on 

block diagram in figure 3.3. Even if one side of channel does not have anything to transmit 

it transmits some dummy data so that equal number of bytes is transmitted in both ways so 

it remains synchronous. Line from master to slave is labeled as Master-Output-Slave-Input 

(MOSI), while the reverse direction is Master-Input-Slave-Output (MISO). In the figure 3.3 

the clock (CLK) is also shown. Chip-select (CS) line in this special case of just two devices 

interconnected might be implemented as simple pull-up of slave CS line so that it is always-on. 

SPI was intended and is used for very short communication like between MCU and its 

supporting peripherals. When one needs to employ this standard for longer transmission lines 

it becomes quite hard to achieve  and possibly another approach should be considered. This 

limitation is related to synchronous nature of the SPI. 

Synchronization requires clocking which is somewhat tricky as it may be done in more than 

one way. First of all clock is sourced by master device and distributed to all slaves hence there 

is only one source of reference clock signal that decides at what data rate transmissions should 

occur. However, slave devices might have some more clock limitations and the impact of line 

length needs to be considered as well. SPI clock rate depends on MCU system clock. In typical 

situations it equals to hundreds of kHz up to dozen of MHz. 
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Table 3.3: SPI modes. 

Mode Polarity Phase 

(CPOL) (CPHA) 

0 0 0 

1 0 1 

2 1 0 

3 1 1 

Data is being latched (captured) at falling or rising slope of the clocking signal while the clock 

signal itself might be positively or negatively polarized. Therefore there are four possibilities 

from which one needs to be chosen for all devices on the same SPI bus . SPI modes are shown 

in table 3.3. 

If clock polarity (CPOL) equals 0 then such clock is idle at level low and first (leading) edge is 

the rising one while the trailing edge is the falling one. If clock polarity equals to 1 it means that 

clock idles at level high so leading edge is the falling one while trailing edge is the rising one. 

When clock phase (CPHA) equals to 0 then the data is asserted (already available) on the first 

edge of the clock signal. When clock phase equals to 1 then it leading edge signals a moment 

after which the data will be asserted. 

The side that initiates communication is labeled as master while the other is known as slave. 

There is only one master device on single SPI bus while there may be many slaves. In such 

situation a chip-select (CS) lines needs to be used. MCU changes sets states on all CS lines so 

that only one peripheral slave device is chosen. The number of slave devices determines how 

many CS lines should be employed. Such approach is shown in figure 3.4. For clarity of the 

diagram there are no pull-up resistors shown on #CS lines which should be present in general 

to keep unused lines in known state. 
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Figure 3.4: Master SPI device with many slaves. 

There is no theoretical limit to number of SPI slaves but in real applications several dozens 

might be a practical maximum. Firstly it is due to MCU pin fan-out limit. Simply it is maximum 

current that can be provided by MCU to drive clocks of its many slave chips. Lengths of 

transmission lines plays significant role here as longer lines increase wear of fan-out. Then 

there is practical limitation of CS lines as utilizing dozens of MCU pins just for chip select lines 

is rather just a waste. It can be improved with use of demultiplexer so for example just 4 lines 

from MCU might select one of 16 slave peripherals. Finally physical space occupied by SPI lines 
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and problems with routing them on PCB becomes an obstacle that prevents using too many 

slave devices. 

Inter-Integrated Circuit (I2C) 

Inter-Integrated Circuit is popular alternative to SPI which was discussed in previous section. 

I2C was developed by Philips in 1982 as synchronous, packet switched serial computer bus. 

Synchronization is based on clock line (SCL) while packets are transmitted on data line (SDA). 

These two lines are the only ones necessary therefore it is labeled as two-wire interface in 

Microchip (formerly Atmel) nomenclature. License fees for use of the standard were collected 

by Philips Semiconductor until it became NXP Semiconductor in 2006. Now fee is necessary 

for acquiring a device address only. 

Table 3.4: Evolution of I2C standard. 

Year Version Data rate Description 

1982 – 100 kbps original version 

1992 1 400 kbps Fast mode 

1998 2 3.4 Mbps High-speed mode 

2007 3 1 Mbps Fast mode+ 

2012 4 5 Mbps Ultra-fast mode 

I2C was evolving over the years and as it had to compete with other standards it improved 

transmission speed. Versioning and possible data rates are shown in table 3.4. Version from 

1982 was designed for the benefit of building control with Philips technology and was not 

officially standardized. Version 1 extended address space to 10 bits (1008 devices in practice) 

but this feature is not fully adopted and still most chips on market use only 7-bit addressing. 

Version 2 introduced power-saving features. Version 4 uses push-pull logic but is only an 

unidirectional bus. Versions presented in table 3.4 include only major versions of the I2C 

standard and omit minor corrections. 
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Figure 3.5: I2C bus. 

Typical devices on the I2C bus are addressed with 7-bit addresses. This address is transmitted 

at the beginning of packet exchange so that only one specific device is active on the bus at 

a time. Thanks to 7-bit address space there could be 128 devices on the bus theoretically, 

although in practice some addresses are reserved so that up to 112 devices might co-exist 

on single bus. Furthermore bus length is limited by its capacitance which should not exceed 

400 pF. Diagram of the bus is shown in figure 3.5. Pull-up resistors are necessary in this 

standard. In typical logic their values are usually in range from 1 k  to 10 k . Lower resistance 

values are “strong pull-ups” which means that they are harder to change by master node but 

also more resilient to noise while lower resistance values are “weak pull-ups” which are easier 

to change but also more prone to noise. 

Address of integrated circuit chip that employs I2C is applied during the manufacturing 

process and it must use one obtained from the NXP. If there are many chips of the same kind 

are to be used on single I2C bus it makes a problem as all of them will have the same address. 

Therefore often on the chip there is one or more pins which need to be pulled up (or down) to 

change the address. But even if there are 3 lines the address of chip is limited to one of eight 

possible values. Hence with more I2C chips, like in sophisticated, wired measurement system, 

it is necessary to use multiplexers to change device addresses on the fly. The drawback of this 

approach is increased number of lines between controller (usually MCU) and chips so that one 

of main benefits from using I2C that is necessity to have just two lines is lost. 

I2C is widely used in PC computers to gather information from the mainboard and some of 

its peripherals such as temperature and fan speeds. List of component types that employ I2C 

standard is similar to the list of SPI devices. 
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4. Programming Environment 

Controlling complexity is the essence of computer 

programming. 

Brian Kernighan 

Readers of this book are expected to be familiar with modern, graphical computer 

environment which takes form of a “computer desktop”. Such GUI is also available in Linux 

installations typical on PC computers therefore no trouble is expected in using common tools 

like file system browser, text editors and web browser. 

Programming environment consist of several applications which may or may be not bundled 

in Integrated Development Environment (IDE). There are many applications that provide 

features necessary in IDE. Some may be lighter, easier to use and start programming with 

them, contrary to others which may attempt to arrange whole programming process. Generally 

the more complex IDE the more initial effort is necessary to become familiar with them. There 

is no good or bad choice in this matter and it depends more on personal view, team experience 

and organizational culture. Core elements of programming environment with exemplary 

applications will be discussed in following sections 

Code editor 

Obviously to write programs one needs a source code editor. It might be simple text files editor 

with notepad-like style. In Linux distributions, depending on GUI that is in use, one may have 

Mousepad in XFCE4 desktop, gedit in GNOME desktop or SciTE that is based on GTK+ portable 

library which makes it available not only on Linux but also on different platforms. Slightly more 

advanced text editor is Kate from KDE desktop environment. Collage of these four programs is 

shown in figure 4.1. 

 

Programming Environment  |  45



Figure 4.1: Mousepad, gedit, SciTE and Kate text editors with assembly code opened. 

All of these applications provide line numbering and multiple files edition. Some may provide 

additional features such as auto-completion and auto-indentation. Syntax highlighting is also 

popular among them but not all editors recognize code written in assembly language. For the 

same reason the feature of code folding available in some of these editors does not work on 

assembly language source files. 

A bit more advanced code editors let user define and maintain structure of a project that 

may be built of many files. Geany that is shown in figure 4.2 is example of such application. 

It provides syntax highlighting for variety of languages, which is not always the case for 

simpler editors. Editing is supported with auto-completion, auto-indentation and code folding. 

It provides compilation of the code and execution of resulting application directly from the 

GUI. Furthermore Geany may be extended with one of many available plugins. 
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Figure 4.2: Geany code editor with single file opened. 

When there is no GUI available one may use text editors that are started from command line 

and work in textual environment. Widely known examples in this category are: pico, nano, vim 
and emacs. The huge benefit of using them is that they may be started on remote machine 

including embedded computers with limited resources. These editors are considered to be a 

good choice for experienced power-users. 

Compiler and Linker 

To create a program one needs to have source code file which in majority of programming 

languages is just a simple text file that was created with editors such as discussed in the 

previous section. Source code files have names with extensions that indicate in which 

computer programming language they had been written. As there is “.c” for C programs, “.cpp” 

for C++, “.py” for Python so there is “.s” or “.asm” for code written in assembly language. 
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Source file is processed by compiler which analyses its contents lexically and grammatically. 

If there are no errors then compiler should generate binary file for specified machine 

architecture. This file is known as relocatable object file, although it has nothing to do with 

object-oriented programming. Object in this context means that this is separate piece of 

code and data that theoretically could be processed by machine for which the compilation 

happened. This kind of file is usually represented with “.o” extension. 

There are many compilers available both as free (open source) and proprietary software. 

Some compilers are available on many platforms and architectures. Furthermore on x86 

architecture there are two competing flavors of assembly coding: Intel and AT&T. Former one 

is considered to be easier to understand so it is more often a first choice for new programmers. 

Latter one is popular on UNIX-like operating systems and is default option in many debuggers. 

Simplicity of Intel flavor is paid with price of some ambiguity because some keywords might 

be confused with user variables. It is not the case in AT&T flavor where values and registers 

are identified with mandatory prefixes. Order of arguments is also different in both styles. 

Operands are read right-to-left in Intel style but left-to-right in AT&T style. 

Many development tools that are popular on Linux platforms came from GNU projects such 

as binutils and use AT&T flavor of assembly language. Familiarity with this assembly style is 

not mandatory for readers of this book but might be helpful, especially during debugging of 

executable programs and binary files with GDB debugger, which is discussed later. 

More experienced readers might be already aware that behind the very well known C 

compiler from GNU Compilers Collection that is renowned gcc there is assembly compiler. This 

compiler can be started independently by issuing command as, although it is rarely used this 

way. This book will require some use of gcc but we will avoid direct use of as. 

One may consider use of NASM compiler which stands for Netwide Assembler . It is very 

popular, cross-platform and easy to use assembly compiler distributed as free open-source 

software on BSD license. This book is based on NASM primarily because of these features. it is 

so popular that most Linux distributions should have it in their package systems available for 

easy installation. All information about NASM syntax and the compiler documentation can be 

found on its main website https://www.nasm.us/. Moreover, development of its source code 

might be observed at its GIT repository https://repo.or.cz/w/nasm.git from which the latest 

version is available for downloads. 

NASM has long-standing development history as initial release took place in year 1996. Initial 

authors were Simon Tatham who is author of PuTTY (famous ssh client for Windows) and 

Julian Hall. Project gained attention and gathered a team of developers that is nowadays lead 

by Hans Peter Anvin, one of Linux kernel developers. NASM versioning is a bit peculiar as 

the first release had version number 0.90. Despite continuous development it never reached 

1.0, and currently the major version number is 2. Version 2.00 from year 2007 was the first 

that introduced support of x86_64 architecture. NASM is backward compatible so it still can 

generate 32-bit code for Unix-like machines and Windows, and even 16-bit code for DOS. 

This book is based on NASM so details of its usage will be given in the next chapter, with 

many realistic examples. 

Alternatively one may try using FASM which was written by Tomasz Grysztar. FASM first 
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release happened in year 2000. Since then it gained a lot of attention and popularity in 

low-level developers community thanks to its features: efficiency of compilation, ease of use 

and simplified BSD license which makes it free (open source) application. Furthermore it is 

cross-platform application available on Linux, Windows and BSD operating systems and it can 

produce executable files in many formats: MZ (DOS), PE (Windows), COFF (Unix-like) and ELF 

(Linux). FASM is easy to obtain and is popular package in Linux repository systems. It is distinct 

due to fact that the compiler program almost does not use any command line arguments 

because all compilation options are embedded in the code source as compiler directives. 

Usage of FASM is really simple as user just needs to start it from command line and provide 

name of source file and optionally name of an output file: 

> fasm myfile.asm program 

Shortly after the above command is finished, assuming that myfile.asm was available in 

current directory, a new file will emerge with name program. 

Basics of Linker 

Linking is the last stage after the compilation necessary for preparation of the program. It 

builds an executable file from one or more relocatable files. Linker in Linux environment might 

be started explicitly as ld command. Some compilers have the linker embedded (like FASM) or 

invoke it silently (like GCC during C code compilation). Linking may also associate program with 

static or shared libraries that contain code necessary for this program to execute. Such more 

advanced linking will be discussed on practical examples in the next chapter. 

Debuggers 

Debugger is an application that enables its user to analyze and eventually understand how 

the program code is executed on-the-fly. Debuggers can start an application under test 

and control process of its execution. Instructions may be executed in step-by-step mode 

or until a breakpoint is reached. Breakpoints are set by the debugger user. Variety of views 

and additional tools provide insight into the program behavior. To sum up, there are several 

purposes for which debuggers are used: 

• analyze program behavior, 

• find problematic or faulty code, 

• reverse-engineering. 
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GNU Debugger 

GNU Debugger also known as GDB is the flagship of debuggers that are available in GNU/

Linux. It is actively developed since 1986 and still new features are added. GDB supports about 

30 architectures such as: x86 and x86_64, IA-64 Itanium, ARM, AVR, Alpha, Motorola 68000, 

MIPS, PowerPC, PA-RISC, SPARC, VAX and more. 

GDB has remote debugging capability so that for example debugging application runs on PC 

computer to which embedded board with ARM processor is connected. Program executed on 

ARM platform is controlled by GDB on PC. It is indispensable feature in debugging embedded 

systems. 

Recent version of GDB provides execution of debugged program not only in “forward 

direction”, which is normal, typical and easy to understand but also “backwards” so that one 

may reverse execution of code that caused error and see how it happened. 

As it was mentioned above, the GDB uses AT&T assembly flavor by default. Fortunately, it 

may be changed with one line in the configuration file (.gdbinit): 

set disassembly-flavor intel 

GDB comes with very limited GUI (start with -tui) and is generally considered as not very 

user-friendly. However, the purpose of the GDB is to provide excellent debugging tool so it 

leaves user experience to front-end applications that may use GDB as their “engine”. This 

approach guarantees flexibility and adaptability to various development environments hence 

different architectures are supported consistently. 

One way of adapting GDB is to enhance its own configuration as it was done in gdb-

dashboard project available on GitHub: https://github.com/cyrus-and/gdb-dashboard.git. 

This “GDB on steroids” might be a great option as it brings almost no overhead to vanilla gdb, is 

easy to distribute and should work in every situation. All that needs to be done is to copy GDB 

config (.gdbinit) to user’s home directory. Here please note that files with names that start with 

dot are “hidden” in Linux. Debug session using this config file is shown in figure 4.3. 

 

50  |  Programming Environment

https://github.com/cyrus-and/gdb-dashboard.git


Figure 4.3: GDB with gdb-dashboard configuration. 

However, gdb-dashboard will display such nice information only during debugging. So the 

minimum operation that must be done in DBG is to start a program under investigation, 

preferably with breakpoint at its beginning. Here is an example of debugging bash, popular 

Linux shell: 

(gdb) b _start 
Breakpoint 1 at 0x422270 
(gdb) run 
Starting program: /bin/bash 

Breakpoint 1, 0x0000000000422270 in _start () 

In the above example a breakpoint is set with GDB command (b) at debugged program entry 

point _start. Then the program is started with run command but stops immediately at the 

declared entry point and might be analyzed in step-by-step mode. 

Voltron 

Voltron is an application written in Python that supports GDB with different “views”. It is 
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available as free software and distributed under MIT license on GitHub: https://github.com/

snare/voltron. Voltron is also available as package in Debian system and possibly also in other 

GNU/Linux distributions so it is easy to install. After correct installation user should change 

GDB configuration (.gdbinit) and put there one line that points to installed Voltron start script: 

source /usr/local/lib/python3.5/dist-packages/voltron/entry.py 

Voltron is not a wrapper but a debugger front-end that uses features which already exist in 

GDB although not so easy to use. The GDB must start first debugging the program before 

Voltron will start. Otherwise there will be error message because Voltron cannot connect to 

GDB session. User is informed with a message that GDB is started with Voltron enabled as in 

this example: 

> gdb /bin/bash 
GNU gdb (Debian 7.12-6) 7.12.0.20161007-git 
Copyright (C) 2016 Free Software Foundation, Inc. 
[...] 
Voltron loaded. 
Reading symbols from /bin/bash...(no debugging symbols found)...done. 

Each of terminals shown in figure 4.4 was started independently. Then in each of them Voltron 

was invoked with different option to have specific view. In the left column, reading from top 

there are views of: memory, registers, breakpoints and stack. On the right side there is source 

code of debugged program opened with VIM editor, disassembled code with indicator of next 

instruction and GDB shell where commands may be given. 

 

Figure 4.4: GDB session with Voltron configuration. 
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To see all available views users should get help message by using this command: 

> voltron v -h 

The list of possible views may change over time but currently there are: 

• breakpoints at which continuous execution should stop – b, bp, break, breakpoints 

• disassembly of binary code back to instruction mnemonics – d, dis, disasm 

• CPU registers – r, reg, register, registers 

• computer memory – m, mem, memory 

• stack area view – s, st, stack 

• backtrace view of previously called functions – t, bt, back, backtrace 

The list also shows command line arguments to utilize specific view. For example to start 

disassembly one may simply invoke Voltron with this command: 

 voltron v d 

However, Voltron will produce no view or only an error message unless GDB is actively 

debugging just like it is with gdb-dashboard GDB config. 

To sum up Voltron improves usage of GDB as it makes possible to employ multiple terminals 

running at once on graphical desktop in windowed-like mode as it is presented in figure 4.4. 

However, it remains a simple text mode application so it can be used on remote machine (e.g.: 

server) with only limited resources and no graphics, or even no screen connected. 

GDB Front-Ends Oriented for Graphical Desktop 

More graphically advanced front-ends also exist such as Nemiver and KDbg. Nemiver, shown in 

figure 4.5 is application more oriented to Gnome Linux desktop while KDbg, shown in figure 4.6 

is based on KDE desktop environment. In typical situation Linux distribution will let run any 

of them regardless of actually used desktop type. Both Nemiver and KDbg have similar level 

of functionality providing graphical fronted to commands which already exist in GDB. They 

require user to open executable and source code file for debugging. Then user may execute 

program in one of two step modes that let user analyze behavior of debugged program one 

instruction at a time: 

• “step into” mode in which execution will step to the next instruction even if it is in a 

called function 

• “step over” mode in which execution will immediately perform called function without 

showing its internals 
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Figure 4.5: Debugging with Nemiver. 
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Figure 4.6: Debugging with KDbg. 

Program execution in step by step mode may be very informative but also time consuming. 

Therefore debuggers, including gdb let user to setup breakpoints at specific positions such as: 

memory address, labeled instruction or function name. In front-ends like Nemiver and KDbg 

breakpoint is set and unset simply by clicking on the left side of code so that graphical icon like 

red circle will indicate breakpoint. 

Radare2 

Radare2 is debugger independent from GDB. It has interesting features that empower user with 

functions for static and dynamic code analysis and reverse-engineering. It is an open-source, 

free software application distributed with GNU Lesser General Public License (LGPL) license 

on its GitHub repository . Compiled version is available in many Linux distributions including 

Debian. Radare2 has impressive list of supported file formats which includes but is not limited 

to: 

• ELF – popular in Linux and Unix-like operating systems, 

• DWARF – extended debugging information 

• PE – used in Microsoft Windows, 
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• MZ – used in Microsoft DOS, 

• Java classes, 

• raw binary files. 

List of architectures supported by Radare2 is even longer as it supports: x86, x86_64, ARM, 

AVR, 8051, MIPS, PowerPC, SPARC, TMS320 and more. 

 

Figure 4.7: Radare2 simple session showing data in memory, CPU registers and disassembled code. 

Radare2 evolved from simple hex editor in textual mode and this minimal style is still primary 

just as it is favored by many programmers. To start working with Radare2 in text mode one has 

to simply start it from command line providing name (path) of a program that is to be analyzed 

as in this example: 

> r2 ./prog 

Radare2 will start its own shell that provides set of commands. Question mark command shows 

help. command starts a bit more user-friendly interface which presents registers, debugging 

of disassembled code and data in memory. There are several views available and to switch 

between them one should press or . In this mode pressing shows list of available commands. To 

quit from the help mode press . Such session is shown in figure 4.7. 
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Interesting feature of Radare2 is its ability to display graph structure of the code branches. 

Whenever there is “if-like” statement or conditional jump then Radare2 can extract this piece 

of code and show it in separate frame that is connected with other blocks by True/False paths. 

Such view is shown in figure 4.8. To get to such view firstly one must start r2 (the actual name 

of Radare2 program in the shell) with program name indented for the test as the r2 argument. 

Then program code must be analyzed with command: aaa and change the view with command: 

VV. Pressing p or  P will slightly change the view, as it was mentioned above. 

 

Figure 4.8: Radare2 showing structure of disassembled program. 

Normally Radare2 is more oriented towards code analysis which includes disassembling. To 

actively debug programs with Radare2 it must be started with “-d” option as in this example: 

r2 -d ./prog 

Debugged program may be executed one instruction at a time in one of two step modes: 

• “step into” – activated with either  s or F7; 

• “step over” – activated with either S or F8; 

User may setup breakpoints either by using db command or in visual mode started with Vpp 
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command. In visual mode cursor must be activated with c and when it is placed on line at 

which the break in execution should occur, the user should press F2 which enables or disables 

breakpoint. Command dc continues execution of the debugged program until any breakpoint 

is met. 

Radare2 is highly extendable. In has embedded HTTP server so that debugging is available 

with modern web browser. Radare2 must be started with specific command line option to 

activate this mode as in the example below: 

> r2 -c=H ./prog 

Then user should open web browser and navigate to address http://localhost:9090/. Such 

session is shown in figure 4.9. 

Figure 4.9: Radare2 in a web browser. 
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Figure 4.10: Radare2 with Cutter front-end. 

For people who prefer typical desktop application but with modern GUI there is actively 

developed Cutter, which nicely wraps around r2. Graph view of program analyzed with cutter 

is shown in figure 4.10. 

Version Control System 

Every computer user knows that programs are versioned, usually with numbers where the 

higher version number the newer is an application. There is no single, standard way of software 

versioning. Basic way is to use single number that is good to describe major releases. But 

when there are improvements and patches to already existing application major and minor 

number are used as for example: 2.4. There might be more “layers” of changes indicated 

with consecutive numbers delimited with dot like: 2.6.14. If the software is as complex as full 

operating system then it might be quite lengthy as it can be observed in Linux: 

> uname -vrmo 
4.9.0-8-amd64 #1 SMP Debian 4.9.144-3.1 (2019-02-19) x86_64 GNU/Linux 

To maintain versioning is responsibility of software programmer(s) or distributor. Technically 

it reflects development process which may be not so straightforward. Changes may bring 

problems, like software bugs and needs to be reverted to older, but stable stage. Sometimes 

there is a need to test some function before adding it to release and so one needs to make 

a branch from main code trunk. When branch is considered to be alright then it may be 
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merged with the trunk. Sometimes a branch never gets back to main track of development and 

becomes an independent application. When there is team of programmers that is working on 

the same source and more than one person commits a change to the same piece of code then 

these two changes make a conflict. This conflict needs to be resolved that is understood as 

a single, consistent change that will actually work properly. Version control system helps to 

maintain all these processes and more. 

Over time many version control systems were developed: CVS, Subversion, Mercurial and 

Git. Nowadays it seems that Git is dominating probably thanks to its use in development of 

Linux kernel and many applications. Git itself is and free and open source software so everyone 

can start git servicing. Git is distributed version control system so that there is no need to have 

a core server, that could easily become single point of failure. Git is also distinguished thanks 

to GitHub, that is an acclaimed hosting service with nearly sixty millions of repositories, where 

half of them are free and open source. GitHub was acquired for US$7.5 billion by Microsoft in 

2018. 

Example how to download software from publicly available git repository is shown here: 

 git clone https://github.com/cyrus-and/gdb-dashboard.git 

This command will create new directory to which all current files from remote repository will 

be downloaded. 

Command-Line in Brief 

Some software, especially for system administrators and programmers is distributed without 

GUI. Graphics might be user-friendly but are hard to port (convert) between architectures 

and require significant machine resources. Therefore key system tools are just command line 

programs due to portability, simplicity and flexibility reasons. Wrapping a command line tool 

with GUI or even several different types of GUI is possible and practiced often. 

Even small embedded computer without screen may have command line and tools that 

we need to develop software. In this book we assume that some work in command line 

environment (CLI) with GUI applications only for code development, debugging and browsing 

documentation. Therefore it is worth to know a dozen of commands and several simple rules, 

which are discussed below to work with files and directories in CLI. Order of discussed 

commands is arbitrary and does reflect neither necessity nor complexity. 

In following examples we assume that we start in user’s home directory (/home/user) and 

structure of exemplary files and directories is as follows: 

 /home 
  /user 
   kitten.jpg 
   /Desktop 
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   /Projects 
    /Assembler 
     data.bin 
     info.txt 
     prog.s 
     prog.o 
     prog 
    /Python 
     hello.py 

pwd – prints current directory; 

> pwd 
/home/user 

ls – lists files and directories in current directory; to see long list with all files and directories 

add optional letters after white space and hyphen; it is also possible to provide name of files or 

directories to be printed as a command line argument; 

> ls 
Desktop  Projects  kitten.jpg 
> ls -a 
.  ..  Desktop  Projects  kitten.jpg 
> ls -l Projects 
total 0 
drwxr-xr-x 2 l l 40 Apr 23 14:59 Assembler 
drwxr-xr-x 2 l l 40 Apr 23 14:59 Python 
> ls -al Projects/*er 
total 0 
drwxr-xr-x 4 l l  80 Apr 23 14:59 . 
drwxr-xr-x 5 l l 100 Apr 23 14:59 .. 
drwxr-xr-x 2 l l  40 Apr 23 14:59 Assembler 
drwxr-xr-x 2 l l  40 Apr 23 14:59 Python 

cd – changes current directory; if used without arguments changes the current directory to 

home directory; 

> cd 
> pwd 
/home/user 
> cd Projects/Assembler 
> pwd 
/home/user/Projects/Assembler 
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mkdir – creates new directory with name given as argument; 

> mkdir Documents 
> ls 
Desktop  Documents  Projects 

rm – removes files or directories; to recursively and forcibly remove directory with its 

subdirectories add option -rf; to remove more files wildcards may be used; more files or 

directories may be given in command line; 

> rm kitten.jpg 
> ls 
Desktop  Projects 
> rm -rf Projects/Python 
> ls Projects 
Assembler 
> rm -rf Projects/Assembler/prog.o Proj*/Ass*/prog 
> ls Pro*/A* 
data.bin  info.txt  prog.s 

cp – makes a copy of file given as first argument under a name given as second argument; to 

make a recursive copy of directory an option -r is used; 

> cp kitten.jpg funny.jpg 
> ls 
Desktop  Projects  funny.jpg  kitten.jpg 
> cp -r Projects Backup 
> ls 
Backup  Desktop  Projects  funny.jpg  kitten.jpg 
> ls Backup 
Assembler  Python 

mv – changes name of file or directory given as first argument to new name given as second 

argument; 

> mv kitten.jpg cat.jpg 
> mv Projects OldProjects 
> ls 
Desktop  OldProjects  cat.jpg 

touch – “touches” existing file by changing its timestamps or creates new, empty file; 

> touch newfile 
> ls 
Desktop  kitten.jpg  newfile  Projects 
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chmod – changes mode of existing file; mode is set of binary flags that indicate if file is 

readable, writable and executable; there are three sets of these flags: one for file owner (user 

indicated with letter u), one for group (abbreviated as g) that is associated with particular file 

and one for all others (abbreviated as o) so it takes form like rwxrwxrwx or in octal mode 777; 

> ls -l kitten.jpg 
-rw-r--r-- 1 user user 9060 Apr 25 17:15 kitten.jpg 
> chmod -r kitten.jpg 
> ls -l kitten.jpg 
--w------- 1 user user 9060 Apr 25 17:15 kitten.jpg 
> chmod u+r kitten.jpg 
-rw------- 1 user user 9060 Apr 25 17:15 kitten.jpg 
> chmod 640 kitten.jpg 
-rw-r----- 1 user user 9060 Apr 25 17:15 kitten.jpg 

Reader is encouraged to experiment with commands presented above. For improved 

productivity it is worth to become familiar with more commands like: 

• chown – changes ownership of the file 

• cat – displays contents of a file; 

• grep – filters files looking for specific strings using regular expressions; 

• diff – compares two files, preferably textual ones; 

• sort – displays sorted lines of a file; 

• uniq – prints lines of file without duplicates; 

• wc – counts lines, words and characters in file; 

• df – displays information about disk free space, preferably with -h option for human-

readable values; 

• ps – list processes (running programs); 

• kill – sends signal to process possibly ending its execution; 

• man – opens manual page; 

Another useful thing in CLI are redirections and pipes. Redirections change the flow of data 

so that output of one program might go to some file or that some file might become an input 

data for some program. Redirections are indicated by > and < characters where former one is 

for redirecting output of program to somewhere and latter one redirects data from somewhere 

to program’s input. Pipes join output of one program with input of another program. Pipes are 

denoted by | that is vertical bar character. Here are examples: 

> ls > files.txt 
> cat files.txt 
Desktop 
Projects 
files.txt 
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kitten.jpg 
> grep [io][ljt] files.txt | wc -l 
3 

Having proper set of tools and just basic experience in Unix-like or Linux shell is enough to 

start learning assembly programming. This will be discussed in the next section. 
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5. Assembly Programming 

We live in a society absolutely dependent on science 

and technology and yet have cleverly arranged things 

so that almost no one understands science and 

technology. That’s a clear prescription for disaster. 

Carl Sagan 

Programming in assembly language shares many similarities with high level languages. It 

cannot be otherwise as every high level language is just an abstraction layer over the set 

of processor instructions that we directly use while programming in assembly language. 

Processor cannot execute the code directly because all that it understands are numbers. To 

simplify things we label some of these number in specific contexts with words or abbreviations 

that are easier to read hence have more meaning to programmers. 

For a programmer who writes code in C language the pivotal point is the main() function. 

But from the microprocessor point of view this main function is just a labeled address in 

the computer memory at which some instructions can be found. Similarly, every variable, no 

matter how meaningful name it would have, is just a labeled memory address at which its value 

is stored. 

In the following example a typical “hello world” program was written in the C language. It 

was then compiled with GCC on PC computer having GNU/Linux operating system installed. 

Successful compilation resulted in working executable program file. We will analyze steps that 

are taken to create executable program from the source code more closely later in this chapter. 

The example program was analyzed with KDbg debugger as it is shown in figure 5.1. 

Debugger is a tool that helps to observe execution of the program in its very detailed form. The 

most crucial feature of debuggers is to disassemble numbers in computer memory back to the 

form with names of instructions and data which may be understand by humans. In the figure 5.1 

we may see the C code interleaved with CPU instructions and their operands (arguments). At 

this point you do not have to worry if you do not understand it. 

 

Figure 5.1: Simple main() function in C language with 
corresponding x86_64 instructions. 
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Labels are stored within executable for debugging purposes but they are layer of abstraction 

unnecessary for electronics so they are often dropped from executables in practical situations. 

This cleaning process is known as stripping and it may significantly shrink the size of the 

executable file. Therefore typical program after compilation is not much more than series of 

instructions for CPU and some amount of data that is to be processed by these instructions. 

Disassembling of such programs is harder that ones with preserved debugging symbols but still 

possible. 

In this chapter we will focus on assembly programming for x86_64 architecture that is 

commonly used in PC computers, Apple computers and game consoles such as Xbox One and 

PlayStation 4. 

In 64-bit Linux programming an AMD 64  calling convention is used. List of arguments for 

function is passed with specific registers and in the order as it is shown in table 5.1. These 

registers are used to pass integer arguments and memory pointers. In case when floating-point 

data needs to be transmitted then xmm registers are used (xmm0, xmm1, xmm2,…). Many 

functions, like those from libc library, require the information about number of floating-point 

arguments passed through xmmn registers. This count is provided with rax register. If there 

are no xmm registers in use then rax should be zeroed before function call. Library function is 

called with call instruction followed by address of this function that in practice is encoded with 

the function name (its label, like printf). 

Table 5.1: Core of 64-bit ABI calling convention – order of function 
arguments. 

Argument Register 

1st rdi 

2nd rsi 

3rd rdx 

4th rcx 

5th r8 

6th r9 

After function finishes its execution it may return results through registers. Main return 

register is rax, followed by rdx. 

It should be expected that values in registers will change due to function execution because 

the function will operate on them. However, some of registers are callee-saved so they should 

be preserved across functions: rbx, rsp, rbp, r12, r13, r14, r15. 

This calling convention is specific for x86_64 architecture. There are different registers and 

different calling conventions for other architectures. To see current table for all architectures 

supported by Linux (over 20 different processors!) one may refer to specific manual page using 

command: 

> man 2 syscall 
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5.2 Numeric values of 
basic system calls in 
64-bit Linux kernel. 

Syscall name ID 

sys_read 0 

sys_write 1 

sys_open 2 

sys_close 3 

sys_stat 4 

sys_fstat 5 

sys_lstat 6 

sys_lseek 8 

sys_access 21 

sys_pipe 22 

sys_dup 32 

sys_dup2 33 

sys_nanosleep 35 

sys_getpid 39 

sys_exit 60 

sys_fsync 74 

sys_truncate 76 

sys_ftruncate 77 

sys_getcwd 79 

sys_chdir 80 

sys_rename 82 

sys_mkdir 83 

sys_rmdir 84 

sys_creat 85 

sys_link 86 

sys_unlink 87 

sys_chmod 90 

sys_fchmod 91 

sys_gettimeofday 96 

sys_sysinfo 99 

User applications do not directly control or communicate with hardware in modern, multi-

user and multitasking operating system like Linux. Instead of that the system kernel provides 

functions that can perform all elemental operations like file access, process creation, timer 
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control and many more. These functions are known as system calls. In Linux there are over 

300 system calls. The table 5.2 presents only chosen syscalls for x86_64 architecture. Number 

of invoked kernel function should be provided in rax. Linux kernel follows System V 64-bit ABI 

convention discussed above with exception to the 4th argument. Instead of rcx the r10 register 

is used. The kernel is invoked with syscall instruction. Syscall instruction does not neeed any 

arguments as it is configured elsewhere what should be called when CPU executes it. 

If there is some less popular or non-standard hardware that needs to be controlled then the 

driver has to be written, which during its continuous execution becomes part of kernel, and it 

should provide some interface to the hardware for user programs. 

To find out what specific syscall does it is advised to consult programmer’s manual. For 

example to get information about kernel function open: 

> man 2 open 

Manual presented with this method are for C programmers but list and order of arguments 

are the same as in kernel syscall. It is so because the C function does not perform specific 

operation on its own but it invokes the kernel. Therefore list and order of arguments are 

consistent between the two. To quit from the displayed manual press . 

To see whole list of system calls one may look into syscalls manual page: 

> man 2 syscalls 

Numeric values corresponding to system calls are in Linux header files. There are files like 

unistd_64.h for x86_64 architecture and similar ones for different architectures. If it is 

installed, for example with package management system then exemplary path is: / usr / src 
/ linux-headers-4.9.0-8-amd64 / arch / x86 / include / generated / uapi / 
asm / unistd\_64.h. 

Another place where the list can be found is the Linux kernel itself, that is available on 

its website (http://kernel.org) and on Linus Torvalds github (https://github.com/torvalds/

linux). The file that should be looked for is arch / x86 / entry / syscalls / 
syscall\_64.tbl. 

32-bit Linux system call convention 

Numbers of syscalls in 32-bit and 64-bit modes are different. Similarly to table for 64-bit 

system call numbers there is table for 32-bit approach. System call number is provided by 

eax register in 32-bit calling convention. Arguments are passed with ebx, ecx, edx, esi and edi 
registers. In 32-bit convention kernel call is invoked with software interrupt number 0x80 that 

is instruction: int 0x80. In this book we focus on 64-bit mode and 32-bit programs will not be 

discussed in details. 
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First Program 

With remaining sections of the book we devote to practical programming on x86_64 platform 

with support of GNU/Linux operating system. Author of this book prefers Debian but any of its 

offspring such as Ubuntu, or Mint, or MX Linux might be used as well. Anyone who is already 

using other distribution, like: Red Hat, Fedora, openSUSE, Manjaro, Oracle, Arch, Gentoo, Tails 

or any other, such person should know what to do and be fine with it following examples given 

below. 

Each section will start with simple objective that we will achieve by solving programming 

tasks. Now, for example we need to have a mimal working example of a program that just starts 

and ends properly. Such program, in file named 01-starter.asm is really short so we may see 

all of it here: 

; ===================================================== 
; To assemble and run: 
;        nasm -felf64 01-starter.asm -o 01-starter.o 
;        ld 01-starter.o -o 01-starter 
;        ./01-starter 
; ===================================================== 

section   .text 
global    _start 
_start: 
        mov        rax, 60 
        mov        rdi, 0 
        syscall 

Lines 1-6 are comments, which are started with semicolon. Anything in line that is after 

semicolon is not processed by compiler. We may put additional information for programmer in 

the comment. Here it is an information how to compile this code. Comment might be placed 

at the beginning of the line but also in the middle, after regular code. Empty lines, like line 

number 7 are possible and they do nothing. 

Because compilation was mentioned here, let’s stop at this topic for a moment and analyze 

the process with provided example. To compile we need to start NASM in command line: 

> nasm -felf64 01-starter.asm -o 01-starter.o 

Here NASM is informed by -felf64 that it should compile code in the output form of ELF64 
that is Executable and Linkable Format which is supposed to be started on 64-bit architecture. 

Then name of file containing source code is provided (01-starter.asm). Finally we decide 

what will be the name of output file with -o directive. Output file should have .o extension. 

Then linking should occur that will convert file with .o extension to an output file (hence -o 
in command line) which may be executed: 
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> ld 01-starter.o -o 01-starter 

In Unix-like operating systems executable files have not any extensions as they are recognized 

due to executability flag. Program may be started by its name but as it is program in local 

directory and not system-wide it should employ path, that is ./ in this case: 

> ./01-starter 

We may analyze what is inside of each of these files with handy command file: 

> file 01-starter* 
01-starter.asm: ASCII text 
01-starter: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped 
01-starter.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped 

This is fast and easy method to find out what really is inside of a file even if it does not have 

extension or have a misleading one. 

Above we verified that program compilation and linking are possible so it may be supposed 

to do what it is expected to do. Now we will analyze the remaining part of source code file to 

understand its behavior. 

Line number 8 contains indication that specific section of a program starts here. Section 

.text contains instructions for the CPU. Please notice dot in the front of the section name. 

section   .text 

Ordinary programs have many sections although in this simple code only one was declared. 

More will appear automatically thanks to compilation and linking processes. Now we will 

analyze this aspect of the compiled program with handy readelf command line utility: 

> readelf -S ./01-starter 
There are 5 section headers, starting at offset 0x180: 

Section Headers: 
  [Nr] Name              Type             Address           Offset 
       Size              EntSize          Flags  Link  Info  Align 
  [ 0]                   NULL             0000000000000000  00000000 
       0000000000000000  0000000000000000           0     0     0 
  [ 1] .text             PROGBITS         0000000000400080  00000080 
       000000000000000c  0000000000000000  AX       0     0     16 
  [ 2] .symtab           SYMTAB           0000000000000000  00000090 
       00000000000000a8  0000000000000018           3     3     8 
  [ 3] .strtab           STRTAB           0000000000000000  00000138 
       0000000000000026  0000000000000000           0     0     1 
  [ 4] .shstrtab         STRTAB           0000000000000000  0000015e 
       0000000000000021  0000000000000000           0     0     1 
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Key to Flags: 
  W (write), A (alloc), X (execute), M (merge), S (strings), I (info), 
  L (link order), O (extra OS processing required), G (group), T (TLS), 
  C (compressed), x (unknown), o (OS specific), E (exclude), 
  l (large), p (processor specific) 

You may find the .text section with which we are already familiar among other sections that 

were produced by compilation process. One may also use relocatable (.o) file obtained after 

compilation for readelf analysis instead of the final executable program. Result should be the 

same. 

Lines 9 and 10 work together. Both are about label which in the assembly source code is a 

human-readable name for something like memory area containing CPU instruction or memory 

area in which variable is held. There may be many variables in the code and many spots in the 

code which need to be labeled. The general rule is that labels should be meaningful and that 

label used once cannot be used again in the same piece of code. 

global    _start 
_start: 

From line number 9 it is known that label _start is declared to be global so it should be visible 

globally. Globally means that not only inside of this program but also from outside. But what 

does it mean outside in reference to the program? In this case it is simply an operating system 

(OS) in which the compiled program will be started. The OS needs to know where the program 

starts so which of its instructions should be executed first as it is the OS that lets the program 

to be started in the first place. Hence there is this common and predefined indicator: _start. 

However, the declaration of label global visibility is not the same as the label itself. The label is 

actually declared in the line 10 and may be recognized due to colon after it. Underscore in front 

of the label is used in “special” cases and rather should be avoided in regular labels. 

We may see all labels with nm utility that lists all symbols from the relocatable and 

executable files: 

> nm ./01-starter.o 
0000000000000000 T _start 
> nm ./01-starter 
000000000060008c T __bss_start 
000000000060008c T _edata 
0000000000600090 T _end 
0000000000400080 T _start 

The main difference is clear as executable file has more symbols added by linking process. 

Second difference is the address at which every symbol (label) resides. In relocatable files 

addresses are not settled yet. These files are supposed to be able to relocate to different 

positions in the memory. If source code is raw material then relocatable file is preprocessed 

construction component that may be moved around. Executable file is then an established 
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construction which has known address. Here we see that when program starts it is placed in 

memory so that _start label points at address 0000000000400080. Thanks to that the OS 

knows to which instruction it should pass execution. 

Remaining lines (11-13) contain the code itself or in other words series of instructions for CPU. 

Only three of them are here in this program, so they should be easy enough to understand but 

for clarity here they are again: 

        mov        rax, 60 
        mov        rdi, 0 
        syscall 

They must be considered as a single piece of code or a “snippet” that may be reused many 

times. First instruction, which is in the line 11 moves value of 60 (decimal) to register rax. 

Similarly mov in line number 12 populates register rdi with 0. Finally a syscall instruction is 

performed which refers to the OS which is expected to perform an action. 

In multitasking environment programs receive very small amount of time (like 1 or 10 

miliseconds) in round-robin or similar manner so from the human being perspective all of 

them execute in parallel. Multicore CPU and properly written application also adds to this 

experience. The OS kernel is also piece of code that is regularly executed by CPU. There are 

several reasons due to which OS is invoked. One of them is voluntarily switch executed by the 

program which uses syscall instruction. Syscall is like a request from the program to the OS to 

perform some action. Program on its own is very limited in actions as all hardware is usually 

controlled by the OS or hardware drivers. Hence, even to finish the program is a work for the 

OS. 

Functionally lines 11-13 are finishing the program by asking the OS to clean up the space 

after it and remove it from multitasking round-robin queue. The OS knows that this specific 

operation is required due to value in rax register when it is invoked by syscall instruction. 

So we could remember that 60 is kernel function that finishes the program which used it. 

Fortunately we do not have to memorize kernel function numbers. We may refer to table such 

as the table 5.2. Or even better we may place something like a table in the file alongside with 

the source code and let the compiler use it. We will learn this technique in the next section. 

Value in register rdi is returned to the shell which may decide upon it, whether the program 

executed and finished properly or it malfunctioned for some reason. Here 0 is placed in rdi as 

it follows the most common approach to the meaning of returned values: 

• 0 – properly finished, 

• 1 – malfunctioned. 

To sum up this particular snippet is like a well known return 0 in the otherwise empty main() 
function in C programming language. 

Thanks to above example reader should: 

• become familiar with structure of assembly code used with NASM compiler, 
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• understand meaning of code section, 

• understand role of labels, 

• understand the process of code preparation, compilation and linking, 

• be familiar with relation between program and the OS by the syscall instruction, 

• become familiar with readelf and nm tools. 

Writing Text with Kernel Function 

Next step is to have some feedback from the program. The simplest way is that it displays 

some text onto the screen. However, in fact the program does not know what the “screen” is! 

It outputs data to one of file descriptors it has available. These descriptors are like handles 

primarily to existing files. So the program needs to have an opened file before it will write text 

somewhere. Well, that is easy to comprehend but how to open the display? 

When every program starts it receives three file descriptors from the operating system: 

• standard input, typical symbolic name STDIN, with number 0 

• standard output, typical symbolic name STDOUT, with number 1 

• standard errors output, typical symbolic name STDERR, with number 2 

Therefore to write onto the screen usually means to write onto the standard output, with 

graphical desktop it will be the terminal window in which the program was started. We do not 

have to care how graphical desktop works or even how this terminal works. They just do thanks 

to layers of software and libraries that simplify our problem a lot. 

The source codes we are going to analyze will get longer and longer in following sections. 

So they could look rather cryptic if we would see them as a whole. Therefore they will be 

analyzed in parts, similarly to what was done in previous section. Name of the source file is 

02-writingtext.asm. 

Beginning of the next source contains comment with information about compilation: 

; ===================================================== 
; To assemble and run: 
;        nasm -felf64 02-writingtext.asm -o 02-writingtext.o 
;        ld 02-writingtext.o -o 02-writingtext 
;        ./02-writingtext 
; ===================================================== 

We may see that there are no changes to the compilation and linking method. 

In next lines we see something new, that is a compiler directive: 

%include "include/consts.inc" 
%include "include/syscalls_x86-64.inc" 
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We can recognize directive by the fact that it starts with sign. This one informs compiler that 

it should supersede line of code with contents of specific file so in other words to include it. 

The first included file is which several lines are shown here: 

; ===================================================== 
; consts.inc 
; Constants used in examples. 
; ===================================================== 

%define STDIN        0 
%define STDOUT        1 
%define STDERR        2 

We see more compiler directives here, all starting with . These define that specific piece of text 

will be treated by compiler like it was specific number. So we do not have to remember that 

standard output corresponds to value of 1. We may use STDOUT instead, which should be much 

easier to remember and make the code easier to understand as well. 

Second included file contains definitions thanks to which we may forget about numbers of 

syscall functions. Here are several lines of it: 

; ===================================================== 
; syscalls_x86-64.inc 
; Linux syscall numbers for x86-64 architecture. 
; ===================================================== 

%define sys_read                       0 
%define sys_write                      1 
%define sys_open                       2 
%define sys_close                      3 
%define sys_newstat                    4 

This file is lengthy with over 300 syscalls defined there. So from now on we may use descriptive 

names like sys_exit instead of memorizing and using some magic numbers. 

Next lines of source file contain beginning of .text section that we are already familiar with: 

section   .text 
global    _start 
_start: 

They are followed by piece of code that is supposed to write message onto the screen: 

        mov rax, sys_write 
        mov rdi, STDOUT 
        mov        rsi, buf 
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        mov        rdx, count 
        syscall 

As this fragment contains some new things it will be discussed in details. In general it is a 

snippet that ends with syscall instruction so it refers to kernel function. Therefore registers 

carry information what should be done. To rax a number of kernel function should be moved 

but we advanced with our approach and now we use symbolic names like sys_exit which 

are defined in one of included files. Then register rdi is filled with a reference to STDOUT. 

Then a reference to labeled message that is somewhere in the memory is moved to register rsi. 
Finally register rdx should contain information about the length of the message so kernel will 

know how many characters it should print to the output. All of these symbolic names in the 

executable program will be regular numbers but we can rely on compiler in this matter. 

To find out why this order of arguments is used one should compare 64-bit ABI, or simply 

the table 5.1 with manual for system function write() that is available from command line: 

> man 2 write 

In the manual there should be line like this: 

 ssize_t write(int fd, const void *buf, size_t count); 

We see the order of arguments in the C function corresponds to order of arguments that 

was used in the assembly code and 64-bit ABI. Name of the function write() resembles 

sys_write kernel call. There is integer argument fd that relates to rdi register filled with file 

descriptor (fd) equal to STDOUT. Then there is a pointer to buffer named buf which has the 

same name in the assembly code and is put into the register rsi. Finally variable count provides 

to the write() function an information about length of the data that should be put onto the 

STDOUT just like it happens in assembly code by the register rdx. 

Next lines we are quite familiar with as they finish the program properly: 

        mov        rax, sys_exit 
        xor        rdi, rdi 
        syscall 

However, there are little differences if compared with example given in section 5.1. Firstly there 

is no magic value moved to register rax any more. Constant sys_exit defined in included file 

is used instead. 

Secondly the rdi register is not populated with 0 but there is another instruction used: xor. 

If you remember section 1.1 then you should recognize the fact that doing XOR operation on 

some argument with itself will result in 0. Always. So this idiomatic assembly instruction zeroes 

register rdi that in this case is both an argument and destination of the result. It is faster than 

moving lengthy (65-bit) value, occupies less memory and is easier to recognize as there is no 

doubt of the operation result. Moving 0 to register may rise questions in the future like: should 

it be really 0 or perhaps it should be 1 in fact? 
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Finally the familiar syscall closes the second snippet present in this code. 

But it is not the end of the source file yet as there are several lines more: 

section   .data 
        buf:                db                "Salut, Mundi!", 10 
        count:                equ                $-buf 

This is declaration of .data section that obviously hold data such as message that is to be 

printed. The message is labeled as buf and consists of bytes that are denoted with db keyword 

(data built of bytes). Texts in ASCII are just bytes therefore db fits the purpose. Text is written 

within quotation marks followed by comma and number 10. 

Data structure may be just series of numbers separated by comma but whenever we can 

write text it is easier to be done like it was done here. However, some characters are non-

printable as they have no visible glyph on the screen. They make some action on the screen like 

Backspace or Enter. For these characters we must refer to their ASCII values if we want them 

in the message. Value 10 is “new line” so it is like pressing Enter at the end of line. More about 

ASCII codes can be found in manual page: 

 > man ascii 

Last line of code defines new label count that points to value that is equal to something. 

Hence equ reserved word is used here. Count is calculated on-the-fly during compilation 

and the expression $-buf means that from “this” memory address should be subtracted 

memory address where buf starts. “This” memory address is just after the message buf so the 

calculated difference is between the end and the beginning of the message that is to be printed 

so it is the message length. We do not have to worry about the actual length of the message, 

we may change it some other day and do not have to recalculate its length manually. All of it is 

done by compiler provided that the line with calculation (this equ value) is placed just after the 

message of which the length we need. 

Thanks to above example reader should: 

• become familiar with symbolic names that may be defined in the code, 

• know the technique of common, reusable include files, 

• understand how and why to avoid cryptic magic numbers with definitions of constants, 

• become familiar with kernel function write, 

• understand relation between C functions, 64-bit ABI and registers, 

• know the .data section, 

• know how to create memory area in the form of bytes, 

• know how to calculate length of piece of memory area on-the-fly. 
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Data Input with Kernel Function 

Single-sided communication is rather boring so in this section we will analyze program that 

also takes some information from the user and works with it. Source file is named 

03-interact.asm. 

First ten lines of code contain comment with information about compilation and two lines 

that include necessary files with defined symbolic names. So it is exactly like it was in previous 

programs. Therefore we will omit this part here and skip to next line: 

%define        USERNAMEMAXLEN        30 

This is simple definition of constant that will be used in more than one place. If some value is 

to be used more than once then it is wise to define it once and then use the symbolic name 

later. If it were necessary to change the value there would be only one spot in which the change 

should occur instead of many. Such approach minimizes chance for errors, makes code more 

legible and simplifies its future maintenance and development. 

Then comes .data section with two phrases that this program will print to the terminal: 

section   .data 
        buf:                db                "Hello, what's your name?", 10 
        count:                equ                $-buf 
        buf2:                db                "I am pleased to meet you " 
        count2:                equ                $-buf2 

Firstly, we should notice that a label cannot be reused so that there are two pairs: buf and 

buf2, count and count2. Probably it would be better to rename these strings with something 

more informative like: helloS and greetS. Capital “S” as the suffix of variable name would 

indicate that this is textual string. I leave it as exercise for readers. 

Secondly please observe that only one of these strings ends with “new line” character. The 

second one will let some other string join to its end in the same line. 

Finally you may remember that in previous example .data section came after the .text 
section. Well, the order of sections in the source is not that important as the compiler and 

linker must setup the memory configuration anyway. 

With next lines new section is introduced: 

section .bss 
        username:        resb        USERNAMEMAXLEN 

BSS stands for “Block Started by Symbol” and it is very old name for uninitialized memory area 

acquired for the program on its start. This .bss section indicates reserved but uninitialized 

memory space. In this memory there may be labels thanks to which access to the section is 

possible. In this example username is the label. Then comes a keyword resb that corresponds 
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to db from previous example as it reserves specific number of bytes. Here is the first spot in 

which constant USERNAMEMAXLEN is used. So 30 bytes are reserved for future use. 

In practice of Unix-like programming it may be expected that the .bss section will be filled 

with zeros. However, it is not guaranteed. On many platforms this section is uninitialized and 

may contain some random data when the program starts. Some older systems even leaked 

sensitive data, like passwords, due to lack of proper initialization of .bss section! 

After both memory sections are declared in the source then comes .text section with its 

instructions, exactly like in the previous example: 

section   .text 
global    _start 
_start: 
        mov rax, sys_write 
        mov rdi, STDOUT 
        mov        rsi, buf 
        mov        rdx, count 
        syscall 

The above piece of code should be clear as it simply prints message “Hello, what’s your name?” 

onto the screen. 

Program encouraged to enter user name and waits for that with the next snippet: 

        mov rax, sys_read 
        mov rdi, STDIN 
        mov rsi, username 
        mov rdx, USERNAMEMAXLEN 
        syscall 

Similarity between writing and reading should be obvious. In the first case we are writing to 

STDOUT count number of bytes that are in the buf area in the .data section. In the second 

case reading occurs on STDIN. This is also the next spot in which USERNAMEMAXLEN is used to 

indicate number of characters (bytes in fact) that may be are stored in the username buffer, 

in the .bss section. If in doubt about the arguments order please consult manual for read() 
function. 

In the manual it can be also found that after successful execution the read() function 

returns number of bytes that were obtained. Values are returned from kernel functions by the 

rax register. However, rax register is used very often and the program will continue so this 

number should be safely stored somewhere else, like rbx register: 

        mov rbx, rax 

If you wonder why value was stored particularly in rbx register then you may refer to 

discussion of AMD64 calling convention and list of callee-saved registers. Several registers are 

supposed to be protected from change in called functions. We will analyze how these functions 
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prevent modification of these registers in later sections of the book. Now we may assume that 

if our code does not affect these registers deliberately then values in them are safe. 

Next piece of code simply writes the second message onto the screen – “I am pleased to meet 

you ” without new line character: 

        mov rax, sys_write 
        mov rdi, STDOUT 
        mov rsi, buf2 
        mov rdx, count2 
        syscall 

There is not much to add here as it almost a duplicate of previous snippets that write message. 

Next piece of code also writes a message onto the standard output but differs a little from 

previous invocations of kernel sys_write: 

        mov rax, sys_write 
        mov rdi, STDOUT 
        mov rsi, username 
        mov rdx, rbx 
        syscall 

Lines 44 and 45 do not bring anything new. Line 46 uses label username that points to memory 

area in .bss section. We may expect that previous invocation of kernel sys_read performed 

correctly and some text is available in that place. Last information the kernel needs is number 

of bytes that it should print. User may enter texts of different lengths so it is important to store 

number of entered bytes as this information may is necessary now. Therefore value from rbx, 

which preserved this number of bytes through all syscall invocations, is retrieved now and put 

to rdx register, where it is expected to be. 

Remaining part of code uses sys_exit exactly in a way as it was discussed in previous 

sections so its discussion will not be repeated here. 

Session with this program may look like this: 

> ./03-interact 
Hello, what's your name? 
Brave Little Penguin 
I am pleased to meet you Brave Little Penguin 

Summing up this section: 

• emphasized the benefits of defined symbolic names instead of magic numbers, 

• introduced .bss section and idea of uninitialized memory area, 

• provided basic method of interaction with computer programs thanks to sys_read 
kernel function. 
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Functions and Stack 

Next program is much lengthier than previous ones. It uses more kernel functions, but we are 

already familiar with this technique so it should be fairly easy to follow. However, there is also 

more complex topic introduced which is stack. Thanks to familiarity with stack we may write 

and use our own functions. Source discussed in this section is named 04-functions.asm. In 

first lines it has comment with information about compilation and include directives, just like 

the previous examples, so we may skip to more interesting fragments. 

Then comes a local definition of constant value and .bss section where it appears: 

%define        SYSINFOLEN        128 

section .bss 
        sysinfobuf:                resb        SYSINFOLEN 

This value is used just once in the code but such approach prepares the code for future 

expansions which could rely on this number. Prepared memory area has length of 128 bytes. It 

will be filled by one of kernel functions. 

There is no .data section in this program and the next one is .text of which several lines we 

may see here: 

section   .text 
global    _start 
_start: 
        call mkdir 
        call chdir 
        call prepareinfo 
        call saveinfo 

        mov        rax, sys_exit 
        xor        rdi, rdi 
        syscall 

It begins in a way that we are used to with the _start reserved label. It ends with familiar 

invocation of sys_exit kernel function. But in between there are instructions we did not see 

yet: call. 

Syscall instruction passes execution to the kernel and the CPU “just knows” where the kernel 

resides in memory. How it is achieved is beyond the scope of this book. Similarly works call 
instruction but it remains in the user space of the code (as opposite to the kernel space) and it 

refers to label. We know that any instruction may be labeled and that labels are just pointers to 

some memory address. Hence call instruction passes execution to some other piece of code 

with given label. 

Functions make code structured so easier to write, read and maintain in the future. 
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Furthermore functions may be reused across many program, provided that they are written 

and prepared properly. 

The chunk of code shown above consecutively calls four functions: mkdir, chdir, 

prepareinfo and saveinfo. Each of these functions is piece of the discussed program as it 

resides in the .text section so we will analyze them one by one. 

So the function mkdir starts this way: 

mkdir: 
        mov rax, sys_mkdir 
        mov rdi, [rsp + 24] 

In this piece of code there is a label mkdir, which we have seen already and one mov 
instruction. Obviously, rax register will contain number of system call that should create new 

directory in the filesystem. Next instruction moves some value to rdi register from a bit 

mysterious expression [rsp + 24]. Here we have to stop for a moment and discuss what 

stack is and how it works. 

Stack is memory structure onto which some data may be put and may be retrieved from. 

Stack is often compared to pile of papers: we may put a piece of paper on top of it and get one 

piece of paper from the top. However, stack is implemented in a way that it grows downward 
memory addresses. Possibly it is better if you imagine a stalactite that is attached to the cave 

ceiling and over time it grows downward. We may also shorten it by removing some piece of it. 

These two operations on the stack in computer memory are available thanks to push and 

pop instructions. Both of these instructions use argument which is the source in former case 

and destination in latter case for data that is moved to or from the stack. Information about top 

of the stack is stored in rsp register so rsp register is decreased every time before the push 
instruction is performed. The value by which rsp changes depends on architecture: in 32-bit it 

will increase by 4 while in 64-bit it will increase by 8. It means that every push and pop may 

work on only single unit of data that corresponds to architecture. Counterpart instruction pop 
reverses the push operation so it increments rsp by constant value after it retrieves 4 or 8 

bytes from the stack, depending on architecture. 

In between .text section and the stack there are .bss and .data sections with their known 

sizes. On top of them there is heap that grows upward like a stalagmite and so towards the 

stack. It is memory area that is acquired on demand, during execution of the program thanks 

to functions like malloc() well known in C programming language. 

Following the cave metaphor we may say that the cave floor is the basis for a program when it 

loads. However, cave floor is not the maximum possible depth as we could dig deeper, possibly 

to the Earth core. Hence our program is not loaded at the address 0x0 but at something like 

0x400080 as we observed when we analyzed the address of _start label in section 5.1. On the 

other hand cave ceiling does not limit dimensions in the other direction. So at addresses above 

the stack there is kernel space of the operating system. 
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Figure 5.2: Memory structure on the background of metaphoric cave. Photo: Andrew McMillan, license: CC0. 

The memory structure discussed above is shown in figure 5.2 together with its cave metaphor. 

Now as we understand how stack works in reference to other sections we may get back to the 

instruction due to which this discussion started: 

        mov rdi, [rsp + 24] 

Moving values with mov instruction does not destroy data in the source. It is unlike with 

physical objects, such as stalactites, where once we take a piece of it then this part is actually 

removed. Therefore when we use stack we may copy data from it without taking it away as 

pop instruction does. The right-hand expression in the above line of code represents relative 
addressing of memory. Register rsp is not a direct value holder but is a pointer to memory as 

it is general purpose of rsp to point to the top of stack. Furthermore this memory pointer is 

incremented by 24 so it points to the memory address of top of the stack plus 24 bytes. But why 

do we add 24 and not 16, or 32, or some other value? 

When call instruction is performed then it pushes onto the stack address of the next 

instruction just beyond it. It is named return address. Thanks to this it is possible to return 

from the called function back to the calling piece of code (which also may be a function!). 
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Therefore if we used relative addressing by adding +8 to rsp we could skip this return address 

as it would move pointer upward the stack – to values that were placed there earlier. 

Next value on stack is number of command line arguments provided to the program. 

Operating system knows this value and puts it there automatically. It is like in C programming 

where we have: 

 int main(int argc, char * argv[]); 

This argc variable is actually number of command line arguments provided to the program 

and is obtained from the stack. So as argc is obtained from the stack then maybe the same 

is about vector of pointers to strings known as argv table? Yes, it is! Perhaps you remember 

that argv[0] in C is the reference to name of the program with which it was started from 

the operating system. Therefore rsp+8 points to number of arguments, rsp+16 points to 

argv[0], rsp+24 points to argv[1] and so on… 

So we found out that first command line argument of the program is available in the mkdir 
function under the address that is stored at rsp+24. If the architecture is 64-bit then stack can 

hold only 8 byte numbers. Therefore it may be only an address of the text that was provided 

through command line argument but not the text itself, which in general may be longer than 8 

bytes (ASCII characters). Thus we need to get to the string by dereferencing it, just like asterisk 

symbol (*) does in C programming. In assembly language if we want to get to memory address 

pointed by some register or an relative addressing expression we indicate this request by 

rectangular brackets: [rsp + 24]. Thanks to this function mkdir will be able to create a new 

directory with name provided to the program through command line. 

Remaining lines of the function look like this: 

        mov rsi, S_IRWXU | S_IRGRP | S_IXGRP 
        syscall 
        ret 

If we consult manual of mkdir system function we would see that it requires two arguments: 

pathname made of characters and mode. Mode is simply set of rights that are established 

for new directory or file when they are created. With this example here the directory will 

be readable, writable and executable by the user (S_IRWXU), readable by group members 

(S_IRGRP) and executable by group members (S_IXGRP). Executability flag in terms of 

directory enables listing of its contents. Values that are represented by these constats are 

provided in . They are summed up logically with OR operation that in NASM is denoted with 

vertical bar |. In terms of Unix-like rights directory will be described by sequence rwxr-x—. It 

means that owner of the directory (usually it is the user who created it) may enter it, add new 

files and delete existing ones there, list directory contents and possibly delete it completely. 

Members of group to which the directory belongs may only enter the directory and see its 

contents. Other users will not be able to do anything with this directory. 

Function finishes with ret instruction that retrieves address from top of the stack and 
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changes instruction pointer register rip to this value so it returns from the function mkdir to 

the main part of the program. 

Next function invoked from the main part of the program is chdir: 

chdir: 
        mov rax, sys_chdir 
        mov rdi, [rsp + 24] 
        syscall 
        ret 

It changes current working directory to directory with given name, which is the only argument 

of sys_chdir function. Here the same directory name is used as it was used in previous 

function. Therefore program should create new directory and enter it. This piece of code is 

function hence it ends with ret instruction. 

Next function obtains some information about operating system: 

prepareinfo: 
        mov rax, sys_sysinfo 
        mov rdi, sysinfobuf 
        syscall 
        ret 

This function invokes sys_sysinfo kernel function which populates memory area which 

address is given as its only argument with some information about the computer. In this 

example sysinfobuf discussed previously is used as the destination for that data. 

Last function called from the main program is saveinfo that uses two system invocations 

where the first one creates new file: 

saveinfo: 
        mov rax, sys_open 
        mov rdi, [rsp + 32] 
        mov rsi, O_CREAT | O_WRONLY 
        mov rdx, S_IRUSR | S_IWUSR | S_IRGRP 
        syscall 

File is both opened and created with sys_open kernel function. First argument of this kernel 

function, as you may see thanks to manual page of open function, is the name of a file. Here it 

should be provided as another argument on command line so it is available under address [rsp 
+ 32] similarly to first command line argument which contained name of created directory. 

This address of string is moved to rdi register. Register rsi corresponds to flags from the 

manual so logical sum of O_CREAT and O_WRONLY is put there. It is easy to guess that first 

symbolic name indicates programmer wish to create file (if it does not exist yet) while the 

second one states that file should be opened (after creation) for writing only. Finally in rdx 
register mode is passed which in this case make the file available for reading and writing by 
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the owner and only for reading to other members of the group to which it belongs. In Unix-like 

style it would be a sequence: rw-r—–. Executability flag is turned off because the file is not a 

program. 

Remaining part of saveinfo function uses sys_write kernel call with which we are already 

familiar: 

        mov rdi, rax 
        mov rax, sys_write 
        mov rsi, sysinfobuf 
        mov rdx, SYSINFOLEN 
        syscall 
        ret 

However, the difference between this example of writing and previous ones is that it “prints” 

bytes to a file, the one that was just created and opened. File descriptor of that file is available 

in rax registers just after previous syscall is finished as through rax register kernel returns 

function results. Hence before rax gets populated with sys_write number its contents (the 

file descriptor number) must be stored in the rdi register. It is very important to remember 

that order of function arguments and order in which registers are populated do not have to be 

the same. 

This ends the program execution and new directory, with new file should be created. As a 

bonus we will analyze part of the resulting file. 

> ./04-functions newdir datafile 
> ls -l newdir/ 
total 4 
-rw-r----- 1 l l 128 May 14 17:24 datafile 
> xxd -c 8 newdir/datafile 
00000000: 1c71 0000 0000 0000  .q...... 
00000008: 2026 0000 0000 0000   &...... 
00000010: a027 0000 0000 0000  .'...... 
00000018: 202a 0000 0000 0000   *...... 
00000020: 0070 dcf2 0100 0000  .p...... 
00000028: 0010 78da 0000 0000  ..x..... 
00000030: 0030 bf12 0000 0000  .0...... 
00000038: 0090 b80b 0000 0000  ........ 
00000040: 00f0 affb 0100 0000  ........ 
00000048: 00f0 affb 0100 0000  ........ 
00000050: 1a03 0000 0000 0000  ........ 
00000058: 0000 0000 0000 0000  ........ 
00000060: 0000 0000 0000 0000  ........ 
00000068: 0100 0000 0000 0000  ........ 
00000070: 0000 0000 0000 0000  ........ 
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00000078: 0000 0000 0000 0000  ........ 

File has binary contents hence it is pointless to see it with text editor. Instead a tool such as 

xxd that presents hexadecimal data is more suitable. Structure of this data is shown in manual 

of sysinfo. 

From the manual it is known that at the beginning of this data structure there is value of type 

long, so 8 bytes on the 64-bit machine, that hold “uptime”. Uptime is time that passed from the 

system boot up. We should remember that little-endian is used so all bytes should be written in 

reverse: 0000 0000 0000 711c. Value 0x711c converted to decimal equals to 28956 decimal. 

This value is in seconds so after simple calculation we know that computer was started more 

than 8 hours ago. 

Furthermore 5th long value (counting from 1) is amount of computer memory (totalram). 

Here it is at offset 00000020 and it equals to 0x00000001f2dc7000 so 8369500160 decimal. 

Therefore this experiment was performed on computer which has 8 GB of RAM. 

Reader is encouraged to further analyze the contents of the resulting file to practice usage 

of binary data, hexadecimal numbers and memory offsets. 

After this section reader should: 

• be introduced to topics of stack and memory organization, 

• be familiar with relative addressing and dereferencing pointers, 

• understand relation between stack and command-line arguments, 

• know how to create new directory and file using kernel functions, 

• know how to open a file and save some data array into that file, 

• understand the role and how to use file flags and permissions, 

• start feeling the flow of code execution made of functions. 

Jumps and Branching 

So far discussed examples were relatively simple, linear sequences of instructions. But in real 

programming regularly a decision must be made on the basis of data that is unknown until 

program execution. Data is usually compared with some known threshold and outcome of the 

comparison often takes form of simple answer like “below”, “above”, “equal”, “not equal”, “not 

below”, or “not above”. Furthermore some operations should be repeated many times until some 

event happens. Example of such situation is when user interacts with the program until the 

operation that finishes the program is requested by that person. 

Branching enables alternative execution path in the program. It may occur in situations 

where one of branches is chosen upon the other because of information that is not known 

during compilation of the code. For example kernel functions like sys_open, sys_read, 

sys_write may fail to execute properly for many reasons such as: user may have no rights 

to open a file, there may be no space on the disk left and so on. In such situation usually a 
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negative value is returned via rax register to the code that invoked the kernel function. So far 

such erroneous situation was ignored in our sample programs but it should be no more. 

Next example is based on source file named 05-errorcontrol.asm. Beginning of this file 

is similar to previously discussed 04-functions.asm with comment in the role of header 

followed by sections .bss and .text. Code from which execution of the program starts is 

changed a little: 

_start: 
        call openfile 
        call prepareinfo 
        call saveinfo 
        xor        rdi, rdi 
quitprog: 
        mov        rax, sys_exit 
        syscall 

We can expect that this program opens a file, acquires system information and then saves 

this data block in the already opened file. All these three activities are performed in separate 

functions which all are invoked with call instruction. Therefore all three of them should end 

properly with ret instruction. 

I am sure that you understand the difference between call an syscall but lets make it clear: 

• syscall – invokes the kernel, wherever it is in the memory, 

• call – invokes a function which resides in user space that is positioned at memory 

address given by label that is the only argument of the instruction. 

New aspect is also that rax is populated with sys_exit value after zeroing of the rdi register 

and is labeled as quitprog. We are used to opposite order of these two instructions but the 

order in which registers are prepared with their specific values does not matter from the 

syscall perspective. Then one may wonder why it is done in such particular order and it should 

reveal itself due the following discussion. 

Now we should analyze function that opens a file: 

openfile: 
        mov rax, sys_open 
        mov rdi, [rsp + 24] 
        mov rsi, O_WRONLY 
        mov rdx, S_IRUSR | S_IWUSR | S_IRGRP 
        syscall 
        call verifyresult 
        mov rbx, rax 
        ret 
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If we compare this snippet with use of sys_open kernel from the previous example we should 

find that now to rsp only 24 is added. Register rsp points to top of the stack where return 

address is. Above it at address rsp+8 there is number of command line arguments (argc). At 

rsp+16 there is first argument that is the name of the program (argv[0]) so finally rsp+24 points 

to first argument provided to the program via the command line. So program tries to access 

a file which name is given in its command line as the first argument. Potential file descriptor 

should be returned by the syscall through rax register. 

After the syscall there is call to verifyresult function that checks if an erroneous situation 

occured. This function is used more than once so it will be discussed a bit later. When 

execution returns from the verifyresult then the value returned from system function is 

still present in rax (we known it thanks to examination of the verifyresult function) and is 

preserved in callee-saved register rbx for future use. 

Second difference in reference to previous example is that the O_CREAT flag is not present 

so this program will not attempt to create new file. In other words it only tries to open file that 

is assumed to exists in the filesystem already. 

Next function is labeled as prepareinfo and it is quite simple: 

prepareinfo: 
        mov rax, sys_sysinfo 
        mov rdi, sysinfobuf 
        syscall 
        call verifyresult 
        ret 

This snippet is known from previous example except of the fact that now after the syscall it 
calls verifyresult function. 

Finally if all went correct so far then program tries to save the data structure to a file which 

descriptor was held all this time in rbx register: 

saveinfo: 
        mov rax, sys_write 
        mov rdi, rbx 
        mov rsi, sysinfobuf 
        mov rdx, SYSINFOLEN 
        syscall 
        call verifyresult 
        ret 

If file was opened successfully then rbx preserved its descriptor and now this value may be 

moved to register rdi, where it is expected to be by the kernel function sys_write. Exactly like 

in previous functions also in this one there is call to verifyresult function after the syscall. 
Finally we should look at the function verifyresult: 
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verifyresult: 
        cmp rax, 0 
        jl        badresult 
        ret 
badresult: 
        mov rdi, EXIT_FAILURE 
        jmp quitprog 

Because this function is called immediately after syscall then rax should contain value returned 

by the invoked kernel function. So that it compares rax register against 0 by using cmp 
instruction. According to difference between both values specific flags in the CPU will be set 

and due to states of these flags conditional jumps like jl used here (“jump-if-less”) may happen 

or not. When condition is met then execution flow goes to the address given by argument 

of the conditional jump instruction. Otherwise next instruction after the conditional jump is 

executed. 

So here if kernel function failed then jl will happen. Execution will step over the solitary ret 
instruction and will go to instruction labeled as badresult. This instruction prepares rdi with 

value of 1 that is hidden under the symbolic name EXIT_FAILURE and jumps unconditionally 

to the code where sys_exit is invoked. 

Keeping all possible execution paths in mind may be problematic hence it is good moment to 

use tool with graphical representation of the code. Program that has this feature: radare2 and 

its front-end – cutter were discussed in section 4.3.4. Due to limited size of this book it is not 

possible to show all codes with this method but sample snapshot of code discussed in current 

section is shown in figure 5.3. 
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Figure 5.3: Analysis of branching in Radare2 graphical disassembler. 

This program may be written in different way: invocation of sys_exit could be in the piece 

of program labeled as verifyresult. This modification is left for practice to the reader. 

Second exercise is to modify the code so that instead of jl the jge ( jump-if-greater-or-equal) 

conditional jump would be used. 
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Table 5.3: Flags and register related jump 
instructions. 

Instruction Description Condition 

JMP Unconditional jump – 

JO Jump if overflow OF = 1 

JNO Jump if not overflow OF = 0 

JS Jump if sign SF = 1 

JNS Jump if not sign SF = 0 

JE Jump if equal ZF = 1 

JZ Jump if zero ZF = 1 

JNE Jump if not equal ZF = 0 

JNZ Jump if not zero ZF = 0 

JP Jump if parity PF = 1 

JPE Jump if parity even PF = 1 

JNP Jump if not parity PF = 0 

JPO Jump if parity odd PF = 0 

JCXZ Jump if cx register is 0 CX = 0 

JECXZ Jump if ecx register is 0 ECX = 0 

JRCXZ Jump if rcx register is 0 RCX = 0 

Table 5.4: Jump instructions for operations on unsigned 
values. 

Instruction Description Condition 

JB Jump if below CF = 1 

JNAE Jump if not above or equal CF = 1 

JC Jump if carry CF = 1 

JNB Jump if not below CF = 0 

JAE Jump if above or equal CF = 0 

JNC Jump if not carry CF = 0 

JBE Jump if below or equal CF = 1 or ZF = 1 

JNA Jump if not above CF = 1 or ZF = 1 

JA Jump if above CF = 0 and ZF = 0 

JNBE Jump if not below or equal CF = 0 and ZF = 0 

Assembly Programming  |  91



Table 5.5: Jump instructions for operations on signed values. 

Instruction Description Condition 

JL Jump if less SF  OF 

JNGE Jump if not greater or equal SF  OF 

JGE Jump if greater or equal SF = OF 

JNL Jump if not less SF = OF 

JLE Jump if less or equal ZF = 1 or SF  OF 

JNG Jump if not greater ZF = 1 or SF  OF 

JG Jump if greater ZF = 0 and SF = OF 

JNLE Jump if not less or equal ZF = 0 and SF = OF 

Flags Register and Conditional Jumps 

It was mentioned that there are lot of possible outcomes from simple comparison with cmp 
instruction. These outcomes are signaled with FLAGS registers which contains flags such as: 

• ZF – zero flag – set to 1 if recent operation resulted in zero, 

• OF – overflow flag – set to 1 if recent (mathematical) operation overflown, which means 

that its result is too large a positive number or too small a negative number (excluding 

sign bit) to fit in destination operand, 

• CF – carry flag – set to 1 if recent (mathematical) operation exceeded size of destination 

or in other words it is high-order bit carry or borrow, 

• SF – sign flag – indicates whether most recent operation resulted in positive (0) or 

negative (1) value, 

• PF – parity flag – set to 1 if number of bits set to 1 in the lowest eight bits of resulting 

operation is even. 

Flags are cleared when their condition is not met so if specific flag is clear (its bit set to 0) then 

it means that situation mentioned in the above list did not happen. 

Number of possible jump-like instructions is impressive. They are given in tables: 5.3, 5.4 and 

5.5. 

Summing up after this section reader: 

• should be able to write and use simple functions, 

• understand basic difference between kernel function and functions in user space, 

• be more aware of nonlinear paths of code execution, 

• understand relation between cmp instruction, flags register and conditional jumps, 

• should be able to list and discuss at least ten conditional jumps. 

92  |  Assembly Programming



Loops 

Loops in programming are iterative operations thanks to which some code may be executed 

many times. Each execution of code within the loop is called iteration. Code inside of the loop 

that is being executed is called loop body. Loops may have three general forms: 

• do-while loops which first do something and then check if condition is met to start next 

iteration, 

• while-do loops which check if condition is met and if it is then they execute their body, 

• iterator-based loops that rely on some counter (iterator) that counts up or down towards 

some predefined limit. 

From the above list it may be concluded that do-while loops execute their body at least once 

even if condition is not met. Two other loops check the condition first and in general it may 

be not met at the beginning of the loop so it will not execute even once. While-do loops and 

loops which are based on iterator sometimes are used interchangeably as they both represent 

the same idea albeit in a bit different way so in high-level programming languages there are 

two different keywords for them. In assembly programming the difference between them is 

minimal. 

Loops in assembly code will be analyzed on the basis of example program 06-looped.asm. 

First ten lines of code resemble previous examples with header in the form of comment and 

includes of files that contain defined constant values. Then in this code comes new constant: 

%define        MAXLINES        5 

This constant is uses several times in the code. It defines maximum number of lines of text 

that the program is supposed to generate. It can be better explained if we look at the program 

output: 

> ./06-looped .... 
    ^ 
   ^X^ 
  ^X^X^ 
 ^X^X^X^ 

Program uses length of command line argument as an information about the requested number 

of lines it should generate. So if the first (and only) argument has 4 characters then program 

will generate four lines of ASCII text which has triangular shape. It is easy to guess that this 

shape is generated iteratively in a loop. Triangle is built of two strings that are defined in .data 
section: 

section .data 
        space:        times MAXLINES                db        ' ' 
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        branch:        times MAXLINES                db        'X^' 
        newline:                                        db        10 

First string labeled simply as space is built of space white characters. There is NASM directive 

times used here that makes it possible to define some data many times so that it effectively 

creates a series in computer memory. We could also declare string of five spaces, but any 

change to required number of maximum possible lines would make it necessary to modify the 

code in more than one place. Thanks to the times directive we may avoid such problem in 

the future. Similarly many times in memory string “X^” will appear labeled as branch. After it 

there will be one new line character (10 decimal), which due to the fact that it is placed in .data 
section just after the string branch it may be considered to be part of the branch string and 

so printed on the screen together with it. 

In first instructions that should be executed this program checks number of command line 

arguments: 

section   .text 
global    _start 
_start: 
        cmp qword [rsp], 2 
        jne quitprogfailure 

It compares current stack pointer, which points to number of command line arguments (like 

argc) against value 2. If it is not equal to 2 then it means that the program was started without 

any arguments or with more arguments than just one. In such case execution flow leads to 

setup of value returned to the operating system: 

; erroneous quit 
quitprogfailure: 
        mov rdi, EXIT_FAILURE 
        jmp quitprog 

The above two-liner just sets the rdi register and performs unconditional jump to code that 

actually invokes kernel function: 

quitprog: 
        mov        rax, sys_exit 
        syscall 

We may assume that user started the program with required number of arguments (just one) 

so instead of the erroneous quit the program will continue: 

        call countchars 
        call printlines 
        xor        rdi, rdi 
quitprog: 
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        mov        rax, sys_exit 
        syscall 

Program will do two things in functions: it will count number of characters in the command 

line argument and accordingly it will print the triangle made of specific number of lines. After 

return from second function program will finish by using sys_exit. However, perceptive 

observer should notice that lines 26-28 are discussed again. This is the feature of assembly 

language that same piece of code may be reused with different input data fairly easy. In case of 

expected execution code will zero register rdi and thus finish the program by returning to the 

operating system information of proper execution. 

Function countchars is more like a procedure as it receives no arguments but works on 

data available on the stack: 

countchars: 
        mov rsi, [rsp + 24] 
        xor rcx, rcx 
looknext: 
        cmp byte [rsi + rcx], 0 
        je foundend 
        inc rcx 
        jmp looknext 

Firstly this code acquires address of string (argv[1]) that is available on the stack. Then rcx 
register is cleared up as it will have the role of loop counter and it should hold number 

of characters of command line argument for remaining part of the code. The string that is 

provided through command line is ended with byte of value 0. Code between lines 42 and 46 

is the actual loop that looks for this 0 by comparison between byte that is at address [rsi + 
rcx] and 0. In such line we must openly declare what data unit should be used by compiler 

because it cannot be guessed from the context. If condition is not met then je instruction is 

simply skipped and rcx register is incremented by 1. Then unconditional jump repeats loop but 

now with already incremented rcx so the next byte is analyzed. 

In case if byte equal to 0 is found then execution flow goes to label foundend: 

foundend: 
        cmp rcx, MAXLINES 
        jbe finishcounting 
        mov rcx, MAXLINES 
finishcounting: 
        ret 

In line 48 counted number of characters is compared against maximum assumed number. If it is 

beyond the threshold it is changed to the maximum value given by MAXLINES defined constant. 

In both situations function ends by using ret instruction. 
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The triangle may be drawn once its number of lines is known. But before that two registers 

are prepared: 

printlines: 
        mov rbx, newline - 1 
        mov r12, 2 

Register rbx holds address of last character in the branch string as it is the same address 

as newline – 1. Register r12 holds information about the number of characters from branch 
string which should be written to the screen. At the beginning it equals to 2 because one 

character is of which the triangle is built in the first line and the other (next one in memory) is 

the new line character at address newline. 

Then there is core of the program that iteratively draws lines that together look like a 

triangle: 

nextline: 
        push rcx 
        call drawline 
        dec rbx 
        dec rbx 
        inc r12 
        inc r12 

Because rcx register may be changed during execution of incoming system calls it is preserved 

on the stack thanks to push instruction. Then in line 63 there is call to another procedure 

drawline that actually draws textual strings. We will get back to it in a moment but for now 

let us analyze remaining instructions of printlines procedure. 

There are two decrements of rbx register and two increments of r12 register. So by 

decreasing rbx we are moving pointer within branch string backwards effectively making more 

of it available for use. We may observe that in every line there are two more visible characters 

building the triangle as it grows in both left and right directions evenly. Reader may try to 

comment out one of this decrements and see the result. Accordingly register r12 is increased 

twice so two more characters should appear. 

After that value from stack is popped back to register rcx: 

        pop rcx 
        loop nextline 
        ret 

It should be the same number which was pushed to the stack at the beginning of the loop. It is 

a decreasing counter but there is no directly visible decrement of rcx register. Instruction loop 
looks quite innocently but it is real beast in terms of what it does. There are three operations 

performed by loop instruction: 
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• rcx (loop counter) is decremented by 1, 

• current (already decremented!) value of rcx register is compared against 0, 

• if rcx did not reach 0 yet then jump occurs to an address indicated by loop instruction 

argument (nextline in the above example). 

A code in C resembling loop in assembly language that is based on loop instruction may look 

like this: 

 do { 
  something(); 
 } while (--rcx > 0); 

It is imporant to observe that when loop instruction is executed it is assumed that rcx register 

was not changed by any other instruction inside the loop. If it is necessary to modify rcx inside 

of the loop then its value as from a counter must be preserved somewhere (e.g.: on stack) and 

retrieved just before the loop instruction. In fact this rule applies to all loops as simple it claims 

that counter should not be changed unless for counting loop iterations. 

Another caveat about loop instruction is that it is very slow. It looks simple but there is 

alternative almost as simple. Actually all we need is to decrement rcx and jump on condition 

that rcx 0. Code with exactly the same effect looks like this: 

    dec rcx 
    jnz nextline 

Why to use this? It occupies just a little more space in memory but is much faster than loop 
instruction. 

Procedure ends with ret instruction once the above loop is finished and then execution flow 

goes back to already discussed line 25 from tha main part of the program. 

What is left to analyze is function drawline that is simple double invocation of sys_write 
kernel function: 

drawline: 
        mov rax, sys_write 
        mov rdi, STDOUT 
        mov rsi, space 
        mov rdx, rcx 
        syscall 
        mov rax, sys_write 
        mov rdi, STDOUT 
        mov rsi, rbx 
        mov rdx, r12 
        syscall 
        ret 
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In this function it is assumed that rcx contains number of white spaces which should be 

printed. Because this register is decremented in the loop discussed above so the number of 

spaces is less by one every line. Second assumption is about the number of characters from 

branch string which should be printed. As it was mentioned above the pointer to position 

in this string is held in rbx register while number of characters that should appear is in r12 
register. 

This function ends properly with ret instruction so execution goes back to line 64 which is 

immediately after the place from which the function was called. 

Concluding, there are two methods of making loops in assembly language: 

• based on loop instruction, 

• based on general purpose registers, comparisons and conditional jumps. 

There is no “better” or “worse” method to create a loop and programmer should use individual 

approach depending on specific situation. 

After this section reader: 

• should be more familiar with practical use of comparisons and conditional jumps, 

• should be able to write loops based on comparisons and conditional jumps, 

• should understand special role of rcx register in loops, 

• should be more experienced with relative addressing method, 

• should be more skilled in analysis of multiple execution paths. 

Logic Instructions 

Our next program will be an extremely powerful cryptographic tool. Well, at least it will apply 

the idea of best cryptography which is one-time pad. The one-time pad method is more than 

century old but it is still not breakable. The idea is stunningly simple: 

1. take one series of bits that represent message, 

2. take another, completely random series of bits with same length as the the message, 

3. “mix” these two series pair-wise using XOR operation. 

Without the key it is not possible to recover the original message. Having the key and 

encrypted message makes it possible to use pairwise XOR operation again. Because XOR of 

something twice with the same argument results in the original value hence it is possible to 

recover the original message. 

In Linux it is extremely easy to obtain random series of bits as all that is necessary is to read 

one of two special files available: 

• / dev / random 
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• / dev / urandom 

Both of these files are virtual entities provided by kernel functionality. However, there are 

significant differences between them. 

Former one is using entropy pool built on the basis of physical events that are observed 

on computer, like pressing keys and moving computer mouse. Therefore it is good option for 

cryptographic purposes. However, entropy pool drains very quickly hence the generation of 

random data takes some time. 

Alternatively one may use second file which is just a pseudo-random generator implemented 

in the kernel. It is efficient as it produces random data without delay. However, it is just a 

complicated mathematical formula in the kernel so it is not as reliable in terms of security as 

the former file. 

We may create file with 100 random bytes by this method: 

 > head -c 100 /dev/random  > rnd.key 

For 100 bytes author had to wait more than 30 seconds but some other time 100 bytes were 

available immediately. This time will vary depending on machine. 

Now we will analyze program named 07-hasher. It is the longest and most complicated 

program so far. Its usage session may look like this: 

 > ./07-hasher rnd.key > output.bin 
Hickory dickory dock 
The mouse ran up the clock 
 > ls -l output.bin 
-rw-r--r-- 1 l l 48 Apr 17 15:56 output.bin 
 > xxd -c 8 output.bin 
00000000: 7c22 07d8 cb19 b753  |".....S 
00000008: 596f 21fa b9bb 71da  Yo!...q. 
00000010: 072b 6860 b568 c0fa  .+h`.h.. 
00000018: b5cd 403d 09a4 caa7  ..@=.... 
00000020: a84e c55f ca4c 372f  .N._.L7/ 
00000028: 29f7 83fd 6bb6 17cb  )...k... 
 > ./07-hasher rnd.key < output.bin 
Hickory dickory dock 
The mouse ran up the clock 

Now we can analyze the code from file 07-hasher.asm which uses uninitialized data section 

for data processing: 

%define CHUNKLEN        8 

section .bss 
        keybuf:                resb        CHUNKLEN 
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        databuf:        resb        CHUNKLEN 
        fd:                        resq        1 

Program will read data from two sources and store it in respective buffers: keybuf which is for 

random key and databuf which is for data that is to be encrypted or decrypted. Each buffer 

has the same length which in the example is 8 bytes. This number may be changed. 

Program opens one file, the one with random binary key, which file descriptor is stored in fd 
variable. This part of code is simple and the method was already discussed so it will be omitted 

here. 

Main part of the code starts with check of argument presence: 

        cmp qword [rsp], 2 
        jne badresult 

In case of failure let it be to few or too many arguments program will be stopped. 

Next comes lengthy (a bit too lengthy) loop: 

nextchunk: 
        mov rdi, STDIN 
        mov rsi, databuf 
        mov rdx, CHUNKLEN 
        mov rax, sys_read 
        syscall 
        call verifyresult 
        cmp rax, 0 
        je quitprog 

        mov rdi, [fd] 
        mov rsi, keybuf 
        mov rdx, rax 
        mov rax, sys_read 
        syscall 
        call verifyresult 
        cmp rax, 0 
        je quitprog 

        mov rcx, rax 
        call hashkeybuf 

        mov rdx, rax 
        call storefrombuf 
        jmp nextchunk 

Inside of the loop there is reading from standard input. If everything is alright then databuf is 
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refreshed with new data. The same number of bytes is read from opened file to which reference 

is held in fd file descriptor. 

It is achieved by the means of rax value returned from first syscall. The rax is not changed by 

any piece of code until it may be moved to rdx in line 40. It ensures that even if less bytes were 

available from the standard input than length of the buffer, the remaining part of the loop will 

rely on actual number of characters available. It is assumed here that there are always more 

key bytes available than there are data bytes. Without this assumption it could not be one-time 

pad method. 

It needs to be mentioned here that the loop is too long and may be shortened by removing 

repeated part to external, procedure that may be called. Reader is encouraged to try it as a 

form of training. 

Then number of characters that were read successfully is used again in ciphering of data 

buffer: 

        mov rcx, rax 
        call hashkeybuf 

The actual function hashkeybuf that performs ciphering looks like this: 

hashkeybuf: 
        mov dl, byte [databuf + rcx - 1] 
        xor byte [keybuf + rcx - 1], dl 
    dec rcx 
    jnz hashkeybuf 
        ret 

To dl register which is the lowest part of rdx register single byte from key buffer is moved. 

Next XOR operation is done on the buffer, which element length is indicated to be byte. 

Please notice that rcx plays double role here: it is loop counter and element of relative 

addressing expression. Thanks to that XOR is performed in backward order – from the last till 

the first element of data buffer. Because loop uses jnz instruction then rcx will never reach 

0 here. Furthermore rcx value provided to this procedure contains number of characters and 

not the maximum index which is less by one. Hence there is “-1” in the relative addressing 

expression. But it can be avoided by moving decrement of rcx before using it in relative 

addressing. This is another change, really simple, which should be tested by reader. 

In a harder attempt this piece of code could be improved with XOR operation on whole 64-bit 

words assuming that input data comes in numbers that are multiples of 8. This change is also 

left to reader for practice. 

When another chunk of data was processed then it is presented to standard output: 

        mov rdx, rax 
        call storefrombuf 
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Storing uses simple sys_write to STDOUT, which was discussed several times already so we 

will not go into details here. 

It is assumed that the next fragment of data will be available if none of conditional jumps 

within the loop body worked. Otherwise unconditional jump jmp will start next iteration of the 

loop. 

        jmp nextchunk 

The program discussed above was example of xor operation which is used in one-time pad 

ciphering. Other logical instructions of four basic logical operations also exist and may be used 

in similar way. 

Thanks to this section reader should: 

• know how to flexibly use files from filesystem and special files like STDOUT or STDIN 
together in single program, 

• know how to use logical instructions in code, 

• become more experienced with general code flow. 

Multiple Source Files 

Source codes that are analyzed in this chapter get longer and longer each section. They also 

become harder to analyze and understand. There is a way to improve quality of code that 

is used in almost all programming languages. It is slicing the code into several files. Making 

fragments of code separated and connected only by some well defined and known interface. 

Usually this “glue” between functions defines way in which code is called and how it returns 

results. 

Source code 08-multi-main.asm has in the header something that was not discussed yet: 

extern strlen 
extern strchr 
extern writeout 

These are declarations for compiler that specific symbolic names are “external” so the compiler 

should not bother us with errors that these labels cannot be found in the code. By using this 

directive we assure compiler that these labels will become available during linking, when we 

provide them from somewhere else. That means – from other file that will be discussed in later 

paragraphs of this section. 

Now we analyze the “main” part further: 

section .data 
        databuf:        db        "Some string in memory.", 10, 0 
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This is sample text which will be processed in this program. It could be retrieved from external 

source like STDIN or file. However, such additional code that we are already familiar with, could 

be just confusing and make us miss the main point of this section. 

Code of this program starts with preparation of arguments and invocation of already 

mentioned strchr function: 

        mov rdi, databuf 
        mov rsi, qword 's' 
        call strchr                ; rax := address 

First argument is an address to buffer which will be analyzed. Second argument is character 

which is sought for. After the function strchr finishes then rax points to first occurence of 

character provided by rsi. 
The function strchr looks and works exactly like function with the same name from 

standard C library. But this one is implemented independently and provided alongside strlen 
and writeout functions in separate source file. Main part of the program uses the writeout 
to print the newly found beginning of the string and finishes its execution. 

As there was extern keyword used in the “main” part so there are global directives in the 

second source file named 08-multi-func.asm: 

global strchr 
global strlen 
global writeout 

We have already used this keyword many times. Thanks to this we made _start visible globally 

and so callable from external code. The method works in this program split in two files as well. 

Now we may analyze three functions that are present here starting with strlen that is 

shown here complete: 

strlen: 
    xor rcx, rcx 
    not rcx 
    xor rax, rax 
    cld 
    repnz scasb 
    not rcx 
    dec rcx 
    mov rax, rcx 
    ret 

The code shown above counts number of characters in string. Perhaps you have noticed that 

string databuf defined in file 08-multi-main.asm is ended with byte of value 0. This is so 

called ASCIIZ string that is ASCII ended with zero. The trailing zero is very popular as it enables 

to make strings of arbitrary length. For example standard C library is using this approach. So in 
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here the function strlen walks the memory and count characters from some specific point, it 

this case first byte of the databuf, till it will find 0. 

Counting is done on rcx register but due to applied method the register must decrement 

each time non-zero character is found. So it starts from maximum possible value that is logical 

negation of zero. Character that will end the search should be in al register. Because in here we 

are looking for 0 then simple xor rax,rax does the work. Last thing that needs to be prepared 

before search starts is status of D flag – where D stands for “direction”. When it is clear 

then search goes forward in memory i.e. increments analyzed addresses. Otherwise it goes 

backwards. 

Search is done in a loop that is written in line 23. This one-lines is built of two instructions. 

First there is repnz that stands for repeat while not zero. This instruction was designed 

primarily for analysis of textual strings but in many walks through memory it may be found 

useful. It comes from a group of similar instructions: 

• rep – repeat while rcx 0, 

• repz – repeat while zero, 

• repe – repeat while equal, 

• repne – repeat while not equal, 

• repnz – repeat while not zero. 

Each of them decrements rcx register just like loop instruction does. So if rcx reaches 0 then 

it results in flag Z set and consecutively ends repetitive operation. 

Companion instruction scasb comes from a group: 

• scas – compares al, or ax, or eax, or rax with data in memory depending on size of 

provided data unit (byte, word, dword, qword); memory address is given by rdi (or pair 

es:edi in 32-bit programs), 

• scasb – explicitly compares byte (register al) 
• scasw – explicitly compares word (register ax) 

• scasd – explicitly compares double-word (register eax) 

• scasw – explicitly compares quad-word (register rax) 

Each of these instructions increment di/edi/rdi register (applies to 16-bit, 32-bit and 64-bit 

architectures) when D flag is cleared. Value by which the memory pointer (e.g.: rdi) is 

incremented depends on which of scas* instructions were used. 

When byte of value 0 is found then the loop ends. It is known that register rcx was 

decremented as many times as there were characters analyzed. To convert it to normal 

(positive) value it has to be inverted on all bits. Decrement of the inverted value comes from the 

fact that trailing zero should not be counted. 

Function returns number of characters in a string through rax register. 

Pair of instructions in the style rep–scas is very powerful. But could this piece of code be 

written in shorter and more efficient way? Perhaps you could try it, as a practical experiment. 
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Hint: the repnz scasb construct occupies only two bytes of code even on 64-bit machine but 

these are actually two separate instructions so you can use any of them without the other. 

Next function is a bit longer so it will be analyzed in parts. So here is the beginning of 

strchr: 

strchr: 
        push rdi 
        push rsi 
    call strlen 

Caller is providing two arguments to strchr function: pointer (address) of string to analyze 

and character that should be found. It is done via registers rdi and rsi, as it should be done 

according to 64-bit ABI. String to which the pointer leads is ASCIIZ string but its length is 

not known. Searching for the character should not go beyond the trailing value 0. Therefore 

function strchr relies on function strlen. 

Both of these functions require address of a string to analyze therefore register rdi is 

preserved on the stack and then the value from stack is retrieved. Similarly the second 

argument that comes via rsi register may be modified during code execution so it is also 

preserved on the stack. However, retrieved value is moved to rax, where it is needed from the 

scasb instruction point of view. 

Once the string length is known then searching may occur up to the last character of the 

string. The sought for character does not have to be present in the analyzed string in general. 

Here is this primary part of the function: 

    mov rcx, rax 
    inc rcx 
    cld 
    pop rax 
    pop rdi 
    repnz scasb 

Because function strlen returns length of the string via rax register its value needs to be 

moved to proper registers. Then rcx is incremented so to include trailing byte with value 0. 

Including such possibility provides simple method to return value 0 if character was not found. 

Finally the value of rdi is adjusted and returned via rax: 

    dec rdi 
    mov rax, rdi 
    ret 

Function is expected to return pointer to a found character but without decrement of rdi it 
would point to the character after that character the function was looking for. 

This function could be written in better way. Try mixing code from strlen function with the 

code that searches for specific character. 
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Finally there is writeout function that looks like this: 

writeout: 
        push rdi 
        call strlen 
        mov rdx, rax 
        pop rsi 
        mov rax, sys_write 
        mov rdi, STDOUT 
        syscall 
        ret 

Pointer to string is provided via rdi. It will be needed not only to count number of characters 

and so to determine length of the string but also for writing that data to output. Therefore its 

value is protected by pushing to the stack. Calculated length of the string is available in rax 
register from which it is moved to rdx because sys_exit kernel function expects number of 

characters to be printed in rdx register (3rd argument of C function). 

Writing to standard output does not need any more comments as it was discussed several 

times. This operation finishes execution of the function which is the last one executed by 

presented program. 

Compilation of this program is slightly more complicated than compilations that were used 

in this book so far. We have to remember that all source files are compiled separately so we get 

as my relocatable object files as there are source files: 

 > nasm -felf64 08-multi-main.asm -o 08-multi-main.o 
 > nasm -felf64 08-multi-func.asm -o 08-multi-func.o 
 > file 08-multi*o 
08-multi-func.o ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped 
08-multi-main.o ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped 

Further analysis of these two files brings more clarity to what they have inside: 

 > nm *.o 
08-multi-main.o: 
0000000000000000 d databuf 
0000000000000000 T _start 
                 U strchr 
                 U strlen 
                 U writeout 

08-multi-func.o: 
0000000000000016 T strchr 
0000000000000000 T strlen 
000000000000002f T writeout 
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So actually there are undefined symbols (U) in the “main” part, without addresses. On the other 

hand the “func” part is missing the _start label. Only together they make whole so they have 

to be linked together and here we may see ability of linker at its full grace. 

 > ld 08-multi-main.o 08-multi-func.o -o 08-multi 
 > file 08-multi 
08-multi: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped 
 > nm 08-multi 
000000000060013c D __bss_start 
0000000000600124 d databuf 
000000000060013c D _edata 
0000000000600140 D _end 
00000000004000e7 t search 
00000000004000b0 T _start 
00000000004000f4 T strchr 
00000000004000e0 T strlen 
000000000040010d T writeout 
 > ./08-multi 
string in memory. 

So linker (ld in this case) actually glues separate parts together. In this example there were 

only two such file but in regular programs the number of relocatable files might be counted in 

dozens. 

After this section reader: 

• should have profound understanding on how multiple-source programs are built, 

• know relation between global and extern keywords, 

• understand how rep-like instruction works, 

• understand how scanning of memory with scas-like instruction works. 

Standard C Library in Assembly Programs 

With kernel functions it is possible to get some data from and to file descriptors. But the 

kernel is just giving the user controlled access to hardware. There is no higher level features 

like ability to actively verify input or make pretty formating of the output. Such functions are 

available in standard C library and in this section we will make use of them. 

The program which makes background for this section should have similar behavior to 

program 03-interact.asm. So it provide some introductory text, wait for user enter her/

his name and then print greeting using the entered name. However, all should be done with 

scanf() and printf() functions known from C programming. Because code uses external 

functions then the compiler has to be informed about it: 
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extern scanf 
extern printf 

Then there are two NASM macros both related to maximum length of user name: 

%define        USERNAMEMAXLEN        30 
%defstr UNXLENS USERNAMEMAXLEN 

First if them defines a number, that for example may be moved to CPU register. The other one 

defines series of ASCII characters so a string that may be concatenated with other strings and 

for example printed to the screen. Second one uses the first as its argument so one will be a 

number and the other its textual representation. 

Strings necessary for printf() and scanf() functions are prepared within .data section: 

section   .data 
        intro:                db        "Hello, what's your name?", 10, 0 
        welcome:        db        "I am pleased to meet you %s.", 10, 0 
        scanform:        db        "%", UNXLENS, "s", 0 

Each of these strings is ended with byte 0, so they all are ASCIIZ strings like it is used and 

required by functions from standard C library. Text labeled as scanform uses defined string 

and so it makes a formatting string for later use by scanf() function. 

Memory area in which scanf() function will store the entered user name is reserved in .bss 

section: 

section .bss 
        username:        resb        USERNAMEMAXLEN 

Size of the reserved space is defined in only one place so it is easy to change it in future. 

Code is relatively simple as it starts with text message being printed to standard output: 

        mov rdi, intro 
        xor rax, rax 
        call printf 

Please compare library function printf() with corresponding kernel function sys_write. 

In current example we do not declare any numeric representation of the function as it is 

called by its address seen as its name (label). 

There is no need to declare STDOUT as the output file descriptor because basic form of 

printf() assumes it has to be so. 

Pointer to buffer is given by rdi register that is on top of the 64-bit ABI function arguments 

list. 

Counter indicating how many bytes should be printed was used in kernel functions but with 

C library functions string are ended with 0 so there is no need for that. Instead rax register 

has to be zeroed. It is so because its value is an information about number of floating-point 
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arguments provided to the function. According to 64-bit ABI it applies to functions with varying 

number of arguments such as printf() or scanf(). We will get back to this topic in section 

dedicated to mathematical functions. 

Part of code that uses scanf() is slightly longer: 

        mov rdi, scanform 
        mov rsi, username 
        xor rax, rax 
        call scanf 

The scanf() function requires formatting string and address of memory area where the data 

should be stored. They are provided by rdi and rsi registers. 

Text that was acquired in previous snippet is used in the next call to printf(): 

        mov rdi, scanform 
        mov rsi, username 
        xor rax, rax 
        call scanf 

This use of printf() is based on formatting string indicating use of one value that is of string 

type. Pointer to the string which has to be integrated is given via rsi register. There should 

be user name entered at that address thanks to previous use of scanf(). If reader does not 

remember formatting string symbols then please consult printf() manual: 

 > man 3 printf 

Finally program should finish gracefully invoking kernel function sys_exit. 

This program relies on external library so during compilation this fact cannot be forgotten 

or there will be errors and strange behavior. 

 > nasm -felf64 09-libraryfun.asm -o 09-libraryfun.o 
 > ld 09-libraryfun.o -o 09-libraryfun 
09-libraryfun.asm:(.text+0xe): undefined reference to `printf' 
09-libraryfun.asm:(.text+0x2a): undefined reference to `scanf' 
09-libraryfun.asm:(.text+0x46): undefined reference to `printf' 

Perhaps perceptive user of standard C library functions noticed requirement to link with the 

library by adding -lc argument to linker ld. When we add this option then linking is successful 

but program cannot be started properly. 

 > ld 09-libraryfun.o -o 09-libraryfun -lc 
 > ./09-libraryfun 
bash: ./09-libraryfun: No such file or directory 
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Shell complains that the program we are trying to start seems to not exist. How can it be so if 

the file obviously is present in the filesystem and we may even inspect it with tools like nm?! 

 > nm 09-libraryfun 
0000000000600ec0 d _DYNAMIC 
0000000000601000 d _GLOBAL_OFFSET_TABLE_ 
0000000000601065 B __bss_start 
0000000000601065 D _edata 
0000000000601088 B _end 
00000000004002b0 T _start 
0000000000601028 d intro 
                 U printf@@GLIBC_2.2.5 
                 U scanf@@GLIBC_2.2.5 
0000000000601060 d scanform 
0000000000601068 b username 
0000000000601042 d welcome 

The above analysis should give us a hint what is happening. Linker found the library so it did not 

complain about undefined references. But still there are two undefined symbols, both without 

address in memory and both from C library. It is so because the standard C library is shared 

one and the linking resulted in dynamically linked file, what may be verified in very simple way. 

 > file 09-libraryfun 
09-libraryfun: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib/ld64.so.1, not stripped 

It is different to what we had so far where all programs were “statically linked”. 

Interpreter in the output from file command is another name for dynamic linker. So the 

program was linked dynamically but we missed to provide information about the position of 

dynamic linker during linking phase. There is a command line option for ld that does it. 

 > ld 09-libraryfun.o -o 09-libraryfun -lc --dynamic-linker /lib64/ld-linux-x86-64.so.2 

Now it will be possible to run the program correctly assuming that on the testing system the 

interpreter is at given location. 

One may find name of the dynamic linker thanks to ldconfig command line application that 

controls all shared libraries in the system: 

 > /sbin/ldconfig -v | grep ld-linux 

This program can list all shared libraries available in the system. On one of author’s computers 

there were more than 2000 of them but mind it is not that much in fact. 

If executable program relies on shared libraries it may be investigated which ones are 

necessary by using ldd command. 

 > ldd 09-libraryfun 
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        linux-vdso.so.1 (0x00007ffee4b26000) 
        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f4ac6bb1000) 
        /lib/ld-linux.so.2 => /lib64/ld-linux-x86-64.so.2 (0x00007f4ac6f50000) 

Why all the fuss if we could simply consolidate library with the library statically? Well, there 

are several reasons for using shared libraries instead of static ones. First of all shared library 

is provided to all applications in the system. There may be literally dozens of thousands of 

them and if each would be statically linked then usage of media storage would rise significantly 

both in terms of occupied space and in terms of access time. Secondly shared library may 

be loaded to memory only once and provided to all applications so the memory footprint is 

limited. Finally if each of programs linked library statically then a fix to newly found problem 

in a library function would lead to necessity of recompilation of all programs. When library is 

shared then there is just one place which receives patch. 

After this section reader should: 

• understand differences and similarities between kernel functions and library functions, 

• understand benefits and potential problems of using shared libraries, 

• known how to compile source that is using shared library. 

Accessing Assembly Functions from C Programs 

From previous section we should remember that using external libraries is possible in assembly 

programs. We may assume that most of libraries were written in C language so it is like we 

used C functions within assembly programs. If you wonder whether it is possible the other way 

round too then answer is simple and obvious. Of course it is! And now we are going to test this 

functionality in this section. It is perhaps even easier than using shared library so this section 

will also introduce basics of arithmetic operations in assembly. 

In the testing application we will calculate factorial of values starting from zero and going 

upwards. Due to finite size of CPU registers we will have to stop at some point. With more 

advanced code it would be possible to go beyond limits of single register but it would require 

significant effort in displaying results and as such is not the point of the current section. 

So here is the C code for testing purposes: 

#include <stdio.h> 
extern unsigned long factorial(unsigned long); 

int main(void){ 
    unsigned long k; 
    for (k=0; k<= 22; k++) 
        printf("%u! = %lu\n", 
                                k, 
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                                (unsigned long) factorial(k) 
                        ); 
return 0; 
} 

As you can see also in C code we have to use extern keyword to indicate that some functions 

are to be found during linking phase. Due to C rules it must be also clarified what type of data 

that external function expects and what type of value it will return. This is just representation 

that is interpreted by C code. Internally it still uses 64-bit ABI so rdi, rsi and so on for 

arguments and rax to return value. In case of more than six arguments stack has to be 

employed to pass them. Alternatively more arguments or returned values may be passed as 

memory structures to which only pointer has to be passed. 

So the factorial() function will be iteratively called up to k=22. Program compilation consists 

of several stages as it is shown below. 

 > nasm -felf64 -gdwarf 10-factorialfun.asm -o 10-factorialfun.o 
 > gcc -c -g 10-testfactorialfun.c -o 10-testfactorialfun.o 
 > gcc -g 10-factorialfun.o 10-testfactorialfun.o -o 10-testfactorialfun 

To compile assembly part NASM should be used but to compile C part and link the whole 

program gcc is necessary. It is so because entry point _start and main() function are not 

the same. It is easy to verify with the nm tool that proved how invaluable it is several times 

already. Results will not be shown here to not clutter the book pages with about 40 symbols 

that are present in the executable file. Readers are encouraged to make this test in their own. 

So there must be some instructions executed between entry point and the main() function. If 

one is interested then analysis of the code execution with debugger brings some insight to the 

process which is beyond the limited scope of this book. 

If code was properly compiled and program linked successfully then its results will be like it 

is shown below. 

 > ./10-testfactorialfun 
0! = 1 
1! = 1 
2! = 2 
3! = 6 
4! = 24 
5! = 120 
6! = 720 
7! = 5040 
8! = 40320 
9! = 362880 
10! = 3628800 
11! = 39916800 
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12! = 479001600 
13! = 6227020800 
14! = 87178291200 
15! = 1307674368000 
16! = 20922789888000 
17! = 355687428096000 
18! = 6402373705728000 
19! = 121645100408832000 
20! = 2432902008176640000 
21! = 0 
22! = 0 

Now we may finally analyze the assembly part. There is declaration that makes factorial 
function available from the outside: 

global factorial 

The function is simply a label in .text section: 

section .text 
factorial: 

There is not _start label in this piece of code as it is not a standalone program. It is a function 

that has to become part of a larger program. 

Function starts by checking whether its argument is equal to 0 and in such case it returns 1 

because . 

    cmp rdi, 0 
    jne expnotzero 
    mov rax, 1 
    ret 

In general situation code labeled as expnotzero is executed. 

expnotzero: 
    mov eax, 1 

Product will be stored in rax register and it will also be used in next multiplication. So eax is 

set to 1 before the loop may start. Why not rax here and what happens to upper half of rax if 

only lower part – the eax is set to some known value? When lower part of 64-bit register is 

set to some value then most significant bit of it is populated to all bits in the upper part. So it 

preserves sign of the lower part. 

The mov used here occupies only 5 bytes in memory where 4 of them represent value moved 

to eax and one stands for the instruction. Alternatively one could try using xor rax,rax in one 

line and then inc rax which effectively would result in rax having value of 1 . But such approach 
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would use 6 bytes in memory. Furthermore such code would be less clear. The value 1 used here 

rather should not become a symbolic name because it will always be 1 from which the factorial 

calculation has to start. 

Argument for the factorial function is provided by rdi register but it may be considered as 

an information about how many times the loop should iterate. Therefore it is used as a loop 

counter and is already prepared. 

Body of the loop is just few lines long: 

loopfactorial: 
    mul rdi 
    cmp rdx, 0 
    jnz overflow 
    dec rdi 
    jnz loopfactorial 
    ret 

First operation that is done here is multiplication of integer values. Instruction mul takes only 

one argument because rax is always used as a factor. So there has to be only second factor 

provided and in our case it is rdi. One may notice that at the beginning of loop the rdi holds 

maximum multiplicand by which the multiplication in factorial series should be done. 

Product goes to pair of registers: rdx:rax. They make pair like they were one register with 

doubled size. Why is it necessary? We may find answer to this question on simple example. 

Let us imagine that we have very simple processor with 3-bit registers. We put decimal value 

7 (0b111) to each of them. Product equals to 49 decimal or 0b110001. If we count how many bits 

are needed to store the result it is 6. So product requires twice as much of binary positions as 

the factors had. Hence such behavior of mul instruction that it is supported with rdx:rax pair. 

Instruction mul has similar behavior in 32-bit, 16-bit and 8-bit multiplications in which results 

are stored in edx:eax, dx:ax and ax respectively. 

Once we understand the above explanation it becomes clear why suddenly rdx register is 

compared against 0. If it is not equal to 0 then it means that result was so large that it did 

not fit into rax only. In that case conditional jump jnz will execute. Otherwise code will flow 

decrement the loop iterator. As long as rdi stays above 0 then next iteration of loop may 

execute thanks to conditional jump in line 24. 

In case of overflow simple two-liner finishes the function: 

overflow: 
        xor rax, rax 
        ret 

Function returns value by rax register. Factorial cannot be equal to 0 so such situation 

indicates overflow error. 

Instruction mul works on unsigned integers but has a companion that works on signed 

integers – imul. 
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Similarly there is pair of instructions for division: div and idiv. Similarly to mul instructions 

also div require only one argument that is the dividend. Divisor is assumed to be in rdx:rax 
in 64-bit operation, edx:eax in 32-bit operation, dx:ax in 16-bit operation and ax in 8-bit 

operation. This guarantees backward compatibility. Because division is done on integer values 

then quotient goes to rax (or eax, or ax, or al) whereas remainder is stored in rdx (or edx, or 

dx, or ah). 

For sum there is add instruction that has two arguments. Leftmost argument is the 

destination of result and also first term. Second argument is second term. When result is too 

high to fit into destination then carry flag is set. It may be used in next addition but to include 

this bit at the least significant position instruction adc should be used instead. This is “add with 

carry”. 

Similarly to addition a subtraction works thanks to sub instruction. First argument of this 

instruction is minuend and also destination for result. Subtrahend is provided as second 

argument. In multibyte subtraction carry flag may indicate a borrow. In such case first sub 
instruction should be followed by a sbb instruction(s) that subtract second argument and also 

value of carry flag (1 is for set). 

Having this section finished reader: 

• should know how to make available in C code an external function written in separate 

assembly source file, 

• how to export functions from assembly code so that they are available in C code, 

• be familiar with basic mathematical instructions that operate on integer values. 

SSE Mathematical Operations 

Final program in this book (11-floats.asm) will use some of very powerful SSE instructions. 

Thanks to them we will do floating point arithmetic. This program will convert temperature 

given in Celsius degrees to absolute Kelvin scale and to Fahrenheit degrees. Program 

compilation is similar to one used in previous example as it requires dynamic linking against 

standard C library. Properly compiled and linked program may be started so that activity shown 

below is possible. 

 > ./11-floats 
Please enter temperature in Celsius: 
37.5 
37.50'C =  310.65 K = 99.50'F 

Code in the header has comment with info about compilation, it includes syscall definitions 

and declares that printf and scanf function will be available as external ones. 

Then comes relatively lengthy .data section with several strings for printf() and scanf() 
functions: 
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section .data 
    queryinfo:                db "Please enter temperature in Celsius:",10,0 
    queryformat:        db "%lf",0 
    results:                db "%.2lf'C =  %.2lf K = %.2lf'F",10,0 
    toosmallerror:        db "Error: provided value is too small.",10,0 

Please pay attention to formatting strings which all use “long float” so in other words double 

precision numbers. Each of such numbers occupy 64 bit so 8 bytes in memory. Some are 

declared further in .data section: 

    align 16 
    absolutezero:        dq -273.15 
    CtoFmultiplier:        dq 1.8 
    CtoFoffset:                dq 32.0 

These floating point values have to be aligned so start at address that is factor of 16. All of them 

are quad-words so 4 double-bytes that is 8 byte per each of them. Similarly in .bss section there 

is space reserved for Celsius degrees value that should be provided by user of this program: 

section .bss 
    align 16 
    tempC:                        resq 1 

Code starts easily with print of message to the screen by the printf() function. There are no 

arguments to this simple call so it is not shown here. Further there is scanf() used to obtain 

value for conversion from the user: 

    mov rdi, queryformat 
    mov rsi, tempC 
    xor rax, rax 
    call scanf 

You may observe that pointer to memory area which has to be filled with double-precision 

floating-point number is provided like any other pointer, via rsi register. 

Then comes more interesting part that uses SSE instructions: 

    movsd xmm0,[tempC] 
    movsd xmm2,[absolutezero] 

One value from memory pointed by tempC is loaded to lower part of register xmm0 and 

another pointed by absolutezero is loaded to register xmm2. 

Registers xmm have length of 128 bits so into one could fit two numbers that are 64-bit in 

size. However, in the above example there is letter “s” in the movsd instruction which indicates 

that a scalar (single number) is loaded. If we would like to load two numbers side-by-side then 

instead of letter “s” there should be “p” which stands for “packed”. Letter “d” in the instruction 
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mnemonic stands for “double precision” but there are also single precision numbers each 

denoted with letter “s”. Single precision numbers occupy 32 bits each, so four bytes (double 

word) in memory. 

Therefore there are several possible options of mov instruction for SSE registers: 

• movss – move scalar with single precision 

• movsd – move scalar with double precision 

• movps – move four single precision values 

• movpd – move two double precision values 

If there are more values to be moved then consecutive positions in memory will be used. 

Therefore “packed” versions of SSE instructions are very useful in vector arithmetic and 

signal processing. They are invaluable in computer graphics and real-time (de)compression of 

streamed data. So there is reason why SSE stands for Streaming SIMD Extensions. SIMD stands 

for “single instruction multiple data” as arithmetic instructions may be applied pairwise to all 

elements of packed xmm register. 

Next there is instruction ucomisd: 

    ucomisd xmm0, xmm2 
    jb error 

It compares two xmm registers, like cmp instruction does with integer data in regular 

registers: If the value that user entered is lower than absolute zero then program jumps to code 

labeled as error and finishes returning 1 to the operating system. 

Otherwise it executes more instructions on xmm registers: 

    movsd xmm1,xmm0 
    subsd xmm1,xmm2 

First one makes copy of value from register xmm0 to register xmm1. Thanks to that register 

xmm0 will contain the original temperature in Celsius degrees and it will be possible to 

print it to the screen. Second instruction subtracts double precision scalars where xmm1 is 

minuend and xmm2 is subtrahend. Difference is stored in the first of these registers. This way 

temperature in Kelvin scale is calculated and stored in xmm1 register. 

Then comes conversion to Fahrenheit degrees that requires multiplication by 1.8 and 

addition of 32.0: 

    movsd xmm2, [tempC] 
    mulsd xmm2, [CtoFmultiplier] 
    addsd xmm2, [CtoFoffset] 

Both operations are done on xmm2 register to which temperature in Celsius degrees is copied 

from memory. Instruction mulsd calculates factor of xmm2 register and multiplier 1.8 stored 
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in memory. Result goes to first argument of instruction so to xmm2 register. Then addition is 

performed with addsd instruction. Thereafter xmm2 holds temperature in Fahrenheit degrees. 

Finally results may be printed to the screen with printf() function: 

    mov rdi, results 
    mov rax, 3 
    call printf 

Unlike in previous examples here we have to move value of 3 to register rax. It indicates that 

there should be three floating point values used. It is assumed that xmm registers will be used 

in order starting from xmm0. This is why we populated xmm0 with Celsius degrees, xmm1 with 

Kelvins and xmm2 with Fahrenheit degrees just as it fits formatting string labeled as results. 

Mnemonics for SSE additions, subtractions, multiplications and divisions all have suffixes 

similar to SSE mov instructions. Using them may be a bit intimidating at first but later one may 

consider they are easier to use than regular mathematical operations on integer values and 

general purpose registers. SSE has lot more specialized instructions like: 

• reciprocals: rcpps, rcpss, 

• square roots: sqrtps, sqrtss, 

• reciprocals of square roots: rsqrtps, rsqrtss. 

These few instructions are just examples of the large set available. SSE is developed since year 

2000. Latest version is SSE5 from year 2009. In year 2010 Intel announced Advanced Vector 

Extensions (AVX) with ymm registers that are 256 bits long. In 2015 AVX-512 was presented 

that introduced 512-bit long registers zmm. This extension is so advanced that it provides 

specialized instructions for neural networks. 

After this section reader: 

• should understand how to use basic arithmetic operations from SSE extensions, 

• know how to manage memory used for floating-point numbers, 

• understand how SIMD (packed) instructions work, 

• be aware of advances in SSE extensions in recent years. 
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Postface 

It is good to have an end to journey toward, but it is 

the journey that matters in the end. 

Ursula K. Le Guin 

Our not-too-long but not-too-short journey through microprocessor engineering ends 

here. Thank you for staying with me through all these pages and for turning blind eye to all 

inaccuracies that I surely missed in the effort of writing this book. If you wish to share your 

views about the book you may contact me via e-mail lukasz makowski at ee pw edu pl. 

We revised fundamental aspects of numeral systems and boolean logic. We analysed 

hardware aspects of modern computing machinery and briefly discussed methods by which 

processors communicate with hardware. Then we discussed how to prepare environment in 

which practical aspects of programming may be learned. In the last part, and the longest one, 

we picked some more interesting instructions from x86-64 architecture and tested them in 

practical programs. 

This book was not intended to cover all possible material, which is hardly feasible in any 

book. Its goal is to open door beyond which there is a path of increasing experience and further 

improvement of skill. In these final words I would like to encourage readers so that you dare to 

search for knowledge that takes form of bits, bytes, and electric signals. I wish you all the best 

in your future software and hardware projects. 

Lukasz Makowski 

Warszawa, May 2019 
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