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Introduction 

The textbook introduces concepts of electrical engineering simulation and modeling techniques. The books is a 
suggested reading for students of the Faculty of Electrical Engineering at Warsaw University of Technology. 
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1.   Signal flow graphs 

Signal flow graphs (SFG) are the graphical representation of the linear equations. They fulfill important role in 
circuit analysis, presenting relations between voltages and currents in a clear visible way. Different forms of 
graphs are already in use. In circuit analysis the most important is Mason signal flow graph representation and 
only this form will be considered in this work. 

1.1. Basic definitions of SFG 

Mason SFG is a graphical way of the flow of signals in the circuit. These signals are represented by the variables 
appearing in linear description of the system [16,20]. They are treated as the nodes in the graph. The nodes are 
interconnected by the directed arcs, which are often called branches. Each arc is described by its gain (called 
also transmittance) representing the proper coefficient of the linear equation. 

Example 1.1 

Let us consider the system of two linear equations 

(1.1) 

Mason SFG needs presentation of these equations in an explicit form of succeeding variables. In this case it 
may look like 

(1.2) 

Now the SFG corresponding to these equations is presented in Fig. 1.1 

 

The internal nodes of the graph are described by the variables xi (i = 1, 2). One node described here 

by the value 1 represents source node. The only arcs associated with it are going out (the source node 
cannot have the incoming arcs). The particular nodes are connected with the other nodes by directed 
arcs, each described by the appropriate gain, representing the coefficient of the linear equation (1.2). 
Each signal xi of the graph is equal to the sum of incoming signals weighted by the appropriate gain. 

Any node of the graph can be treated as an output node (variable). 

We can recognize the loops, composed of the branches, all of the same direction, forming the closed cycle 
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Fig. 1.1. Mason SFG representing equations (1.2). 

(without repetition of nodes and branches). The gain of the loop is the product of the gains of the branches 
forming the closed path. In particular the loop may contain only one branch. In such case it is a self-loop. 

Very important advantage of the Mason SFG is the existence of Mason gain formula of the topological 
nature. It allows calculating any signal xi of the graph treated as the output node. This formula is defined as the 

transfer function between the signal of the output node and the source node (in the graph of Fig. 1.1 the source 
node was assumed as 1). This transfer function may be treated as the gain of the system in relation output/

input. Let us assume notation , in which Xwy=Xout represents output signal and Xwe=Xin input 

signal associated with the source node. According to Mason gain formula the transfer function T is described 
in general as follows [16,20] 

(1.3) 

In this equation Δ is the main graph determinant of the graph, which can be presented in the form 

(1.4) 

The coefficients Gi represent the gains of loops in the 

graph. The expression for Δ begins with the value of 1. The next term represents the sum of the gains 

of the loops existing in the graph. The following terms , etc., represent the gains of non-touching 
loops combined by two, three, etc. The expansion formula is performed until all non-touching combinations are 
found. Observe, the following terms of expansion have alternating signs (plus, minus, plus, etc.). 

The expression  in the numerator of equations (1.3) represents all forward paths from the source 
to the output node. Tk means product of the branch gains from the source to the output. Δk is determinant Δ 

defined for the subgraph which is separated from the kth route. This subgraph is formed by removing the path 
with all its nodes and arcs. It there are no loops in such subgraph the determinant Δk is identically 1. Mason 

formula will be illustrated on the example of the graph of Fig. 1.1. Applying this formula we get solution for 
both variables x1 and x2 in the following forms 
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In our example the source node is described by xwe=1, hence the formula delivers direct solution of equations 

(1.1), because T1=x1, T2=x2. Observe that the procedure of solving this system of equations did not involve any 

mathematical manipulations with equations of the system. 

Example 1.2 

As the next example consider the SFG presented in Fig. 1.2, of the gains described by the letters a, b, c, …, l. The 
variable xwe represents the source node. Let us assume x5 as an output signal. 

Fig. 1.2. Signal flow graph of the example. 

 

Transfer function T defined as   is now described in the form 

The main determinant Δ contains three terms associated with the loops (sum of all loop gains, product of the 
gains of all combinations of two non-touching loops and product of gains of three non-touching loops). The 
numerator contains 6 terms in the sum, each corresponding to the particular route from the source to the 
output node x5. 

1.2. Application of SFG in analysis of electrical circuits 

Mason graph is constructed in general on the basis of the system of linear equations describing the circuit. 
However, in the case of electrical circuit it is possible to formulate simple rules allowing automatic construction 
of the graph without describing circuit by the equations. On the other side application of Mason gain formula 
allows getting solution for any node signal of the circuit. It means that any electrical circuit can be solved 
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by simply inspecting the structure of the analyzed circuit. It leads to the great simplification in analysis of 
electrical circuits. 

To find proper graph representation of the circuit let us consider some typical connection of circuit elements. 
Let us start from the connection of onl 

y passive elements in the kth node as presented in Fig. 1.3a. The symbols V1, V2, …, Vn mean node potentials 

with respect to the reference node (typically the mass). 

a) 

b) 

Fig. 1.3. Typical connection of passive elements in the kth node (a) and Mason graph corresponding to such 
connection (b). 

From current Kirchhof’s law (nodal description) for this kth node we get 

 (1.5) 
After simple mathematical manipulations we get 

(1.6) 

where Ysk is the sum of admittances connected to the kth 

node,  . The equations (1.6) can be associated with the SFG presented in Fig. 1.3b. Observe 
close similarity of the circuit structure and the graph. Each admittance Yi (i = 1, 2, …, n) of the circuit is 

represented in the graph by the branch of the gain  . Each branch going out from any node Vi (i=1, 2,…,n) 

is directed toward the node Vk, for which the graph representation is actually constructed. Therefore the graph 

representation of any node connection in the circuit can be drawn automatically without prior definition of 
circuit equation for the node. 

This simple passive connection of elements can be easily generalized for more complicated connection 
of elements involving independent current sources and controlled current sources (nodal description accept 
only current sources, all other types of sources should be converted to current type using Thevenin-Norton 
equivalent). 

Fig. 1.4a shows such general form of the node containing not only passive elements but also independent 
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current source I and current source controlled by the voltage Vij (voltage between node Vi and Vj). From 

Kirchhoff’s current law for this node we get 

 (1.7) 
After simple mathematical manipulation we get the final description of the voltage in node k. 

 (1.8) 

Once again Ysk is the sum of admittances of passive elements connected to the kth node  . 

The equations (1.8) is represented in the graph form as shown in fig. 1.4b. 

a) 
b) 

Fig. 1.4. Typical connection of passive elements represented by admittances and current sources in kth node (a) 
and Mason SFG representing such connection (b). 

 
The interesting simplification in construction procedure is observed in the case of voltage amplifiers, 

including ideal operational amplifiers (voltage gain tending to infinity). Fig. 1.5 presents the simplified model of 
voltage amplifier of inverting and non-inverting inputs and the gain A (in the case of ideal operational amplifier 
the value of A tends to infinity). 
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a) b) 

Fig. 1.5. Model of voltage amplifier of inverting and non-inverting inputs (a) and its SFG representation (b) 

The output voltage Vo of the amplifier is described by 

(1.9) The Mason SFG form presented in Fig 1.5b is evident 
now. 

Very often in practical application we deal with special connection of ideal operational amplifiers (A tending 
to infinity and infinite input impedance), where the noninverting input is grounded. In such case the SFG of 
the circuit can be greatly simplified. 

Consider such general case presented in Fig. 1.6a. In such connection of op-amp the potential of non-
inverting and inverting node is equal zero. Therefore, from Kirchhoff’s current law written for inverting node 
we get 

(1.10) 
And finally we are able to obtain expression describing 

directly the output voltage V0 of the circuit in the 

following form 

(1.11) 
The Mason SFG corresponding to such equations is 

presented in Fig. 1.6b. Once again we can build SFG 
directly on the basis of inspection of the circuit structure, 
without writing explicitly Kirchhoff’s equations. 
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a) 

b) 

Rys. 1.6. Typical general connection of elements containing ideal operational amplifier of infinite gain (a) and 
Mason SFG corresponding to it (b). 

The general procedure of building SFG for the arbitrary circuit structure can be presented in the following way: 

1. 

Recognize all independent nodes in the circuit and denote their nodal voltages. 

2. 

Locate all recognized nodes of the future graph in the configuration similar to their positions in the 
circuit. Recognize the source node, from which only out-going branches are possible (there is no need 
to build its graph representation). 

3. 

Step by step build the graph representation for the succeeding nodes using their associated SFG 
represented in figures 1.3 – 1.6. 

4. 

In general case for the limited gain A of the amplifier (different from infinity) we must recognize two 
cases: 

4.1 

The node under construction is placed on the output of op-amp. In such case use its general 
model of Fig. 1.5. 

4.2 

Else, if the node is not on the output of op-amp – use its models presented in Fig. 1.3 or 1.4. 
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5. 

In the case of infinite gain of op-amp you may apply the previous model of op-amp and finally 
calculate the limit of final expression of transfer function at A tending to infinity, or use the simplified 
model of op-amp shown in Fig. 1.6. 

6. 

Remember, in constructing SFG representation of particular node the appropriate branches should 
directed to this node. After traveling through all nodes of the circuit the final form of the graph is 
created. 

1.3. Examples of SFG application in analysis of circuits with operational amplifiers 

1.3.1 Filter structure with multiloop feedback 1.3.1 Filter structure with multiloop feedback 

The procedure described above will be illustrated on the example of multiloop feedback circuit very often 
used in filter design (Fig. 1.7a). Assume gain of ideal op-amp equal infinity. Because the noninverting node is 
grounded the node potential V2 is zero and will not appear in SFG. Therefore, we use the simplified model of 

op-amp presented in Fig. 1.6b. 

a) 

b) 

Fig.. 1.7. Multiloop filter structure (a) and Mason SFG corresponding to such circuit (b). 
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The circuit contains three nodes (V1, V2 and Uwy), from which V2=0 and will not appear in the graph. The graph 

representation of the circuit is created for each node (V1, and Uwy) in an independent way. 

Node V1 is a typical connection of passive elements and therefore, its graph of Fig. 1.3 is applied. Node V2=0 

is excluded from the graph. Graph representation of Uwy follows from the model illustrated on Fig. 1.6. Fig. 1.7b 

shows the final form of the graph. Applying Mason gain formula we get the following transfer function 

(1.12) 

where . After substituting the expression for Ys1 we get the final form of solution 

(1.13) 

Applying proper description of elements in s-domain 
(for resistor Y=1/R, for capacitor Y=sC, for inductor Y=1/sL) we get the typical transfer function of complex 
frequency s, T=T(s)=H(s) being the starting point in filter design. 

1.3.2 Circuits with voltage amplifiers of finite gain 

As an example consider the circuit structure containing five voltage amplifires of the finite gains: K1, K2, K3,

K4 and K5 as shown in Fig. 1.8a. Transfer function of the circuit is defined as T=Uwy/Uwe [16]. 
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a) 

b) 

Fig. 1.8. The circuit structure with voltage amplifiers of finite gain (a) and Mason SFG corresponding to this circuit (b). 

The SFG, constructed according to the presented procedure, is shown in Fig. 1.8b. After application of Mason 
gain formula we get transfer function T in the form. 

(1.14) 

Signal flow graphs    11



where , , . After simplification we get the final form 
latex T=\frac{\left( {{K}_{1}}{{Y}_{1}}{{Y}_{4}}+{{K}_{2}}{{Y}_{3}}{{Y}_{4}} 

\right){{Y}_{s5}}+{{K}_{3}}{{Y}_{5}}{{Y}_{6}}{{Y}_{s4}}}{{{Y}_{s4}}{{Y}_{s5}}{{Y}_{swy}}-Y_{6}^{2}{{Y}_{s4}}-
{{K}_{5}}{{Y}_{6}}{{Y}_{7}}{{Y}_{s4}}-Y_{4}^{2}{{Y}_{s5}}-{{K}_{4}}{{Y}_{2}}{{Y}_{4}}{{Y}_{s5}}}$ (1.15) 

After declaring particular forms of elements (for example resistor Y=1/R, capacitor Y=sC) we obtain the 
typical transfer function of complex frequency s, T=T(s). 

1.3.3. Biquadratic structure containing three operational amplifiers 

Let us consider the so called biquadratic structure built on the basis of three operational amplifiers and RC 

elements, as shown in Fig. 1.9a. The voltage transfer function of the circuit is defined as  . We 
will build the SFG using model of op-amp of finite gain A, as presented in Fig. 1.5. 

a) 

b) 

Fig. 1.9. The structure of biquadratic filter (a) and its SF (b) 

The Mason SFG built at the assumption of finite gain of operational amplifier is presented in Fig. 1.9b. It 
contains 5 loops, within which we can recognize some combination of two non-touching loops and even three 
non-touching loops. Applying Mason gain formula we get 
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(1.16) 

 

of the denominator M(s) given in the form 

(1.17) This general solution can be significantly simplified if we 

assume the gain A tending to infinity,  . In such 

case we get 

 

(1.18) 1.3.4. KHN filter structure 

The next example will consider the biquadratic structure 
defined by Kervin-Huelsman-Newcomb (KHN) shown in 
fig. 1.10a containing operational amplifiers of infinite gain [16]. This is the structure similar to the already 
analyzed in the previous section. This time we apply the simplified model of infinite gain operational amplifier 
of grounded non-inverting inputs. 
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a) 

b) 

Fig. 1.10. KHN filter structure (a) and Mason SFG corresponding to this structure (b). 

Fig. 1.10b presents SFG of the circuit. Applying Mason gain formula we obtain solution in the form of 
appropriate transfer function. Assuming different output nodes three different transfer functions T(s) can be 
obtained. They are defined in the following forms 

 (1.19) 
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 (1.20) 

 (1.21) 
All transfer functions have the same denominator M(s). It is a polynomial of the second order defined as 

following (conductance G are inverses of the proper resistances) 

 (1.22) 
From these expressions it is evident that transfer function TLP(s) represents the lowpass filter, TBP(s) – 

bandpass filter and THP(s) – high-pass filter. 

1.3.5. FDNR circuit 

Mason graphs built for the circuits, according to the presented procedure, are based on nodal description of 
the circuit and operate only by voltages. In the case when the output variable is a current the additional node of 
the graph representing the current is needed. The representation of such node is created using the Kirchhoff’s 
law, in which the current is expressed through the nodal voltages. 

The example of such case will be presented for the circuit called Frequency Dependent Negative Resistor 
(FDNR). FDNR represents the input admittance Ywe=Y(s)=Ds2 , of the positive coefficient D. The structure of 

FDNR is depicted on Fig. 1.11a. It contains two ideal operational amplifiers, three resistors and two capacitors 
[4,16]. 
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a) 

 
 

b) 

 

Fig. 1.11. Structure of FDNR (a) and Mason SFG for computing the input admittance (b). 

In the case of admittance the output node represents the input current and the source node is the input voltage, 
since Y(s)=Iwe/Uwe. Assuming ideal operational amplifiers of infinite input impedance the input current Iwe can 

be expressed in the form 

(1.23) 
Iwe=sC(Uwe-V1) 

The SFG for such circuit is built in the same way as for 
the previous circuits. The only difference is in output node, 
which is built on the basis of eq. (1.23). Full structure of SFG is shown in Fig. 1.11b, in which the input current 
is denoted by Iwe and input voltage by Uwe. Application of Mason gain formula leads to the solution of the 

following form, dependent on the arbitrary value of operational amplifier gain A. 

(1.24) 
where the main determinant Δ is given by 

(1.25) 
Assuming  the expression for Y(s) is 

simplified to 
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(1.26) 

Comparing this expression with the definition of FDNR
Y(s)=Ds2 we find the value of coefficient D as follows 

(1.27) 

This value depends only on the parameters of the 
passive elements (the resistors and capacitors). Observe, that in steady state operation at sinusoidal excitation 
of the angular frequency ω, the FDNR represents the negative conductance controlled by the frequency, since 
in such case Y(s=jω)=G=-ω2C1C5R2R4/R3. 

1.4 Exercises 

1. 

Draw signal flow graph for the system of linear equations 

Solution: 
Graph corresponding to this system of linear equations is presented in Fig. 1.12 

Fig. 1.12 Signal flow graph representing the system of linear equations 

1. Draw signal flow graph for the given circuit and calculate V3 
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Fig. 1.13a The circuit structure 

Solution: 
SFG representing the nodal circuit equations for circuit of Fig. 1.2a is shown in Fig. 1.2b. 

Fig. 1.13b SFG representing the circuit of Fig. 1.13a. 

The admittances included in the graph are equal: 
Ys1=Y1+Y2+Y3 

Ys2=Y3+Y4+Y5 

Ys3=Y5+Y6 

From Mason formula we get the expression for voltage V3 as follows 

Apply signal flow graph to calculate transfer function T=Vout/Vin at the gain of operational amplifier A→∞ 
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Fig. 1.14a The circuit structure subject to analysis 

Solution: 
SFG corresponding to the circuit structure of Fig. 1.3a is presented in Fig. 1.3b, where Ys1=Y1+Y2+Y5. 

Fig. 1.14b SFG corresponding to the circuit of Fig. 1.14a. 

From Mason formula we obtain 

Assuming A→∞ we get 
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1.5 Basic definitions 

Branch – the directed arch joining two nodes in the graph. 
Branch gain – the gain parameter associated with the branch. The output node signal of the branch is its 

input node signal multiplied by this gain. 
FDNR – frequency dependent negative resistor, i.e., the electronic circuit implementing negative resistance 

controlled by the frequency. 
Forward path – a path from an input node to an output node in which no node is touched more than once. 
Gain of graph – the ratio of output signal to the input (source) signal calculated by Mason gain formula. It 

is also called transfer function. 
Graph determinant – the mathematical expression used in Mason gain formula. It is formed on the basis 

of the loop gains existing in the graph. 
Graph model of circuit – graph representation of the circuit equations, built usually by inspection of the 

circuit without declaring the Kirchhoff’s description in an explicit way. 
Loop – a closed path of directed branches. It originates and ends on the same node, and no node is touched 

more than once). 
Loop gain – the product of the gains of all the branches in the loop. 
Mason’s gain formula – the method for finding the transfer function from the source to the output node 

of a linear signal-flow graph. 
Non-touching loops – the loops having no common nodes. 
Path – the continuous set of branches traversed in the direction indicated by the branch arrows. 
Path gain – the product of the gains of all the branches in the path. 
Self-loop – the branch, which begins and ends at the same node without entering other nodes. 
Signal flow graph – the graphical representation of the linear system of equations in which variables are 

represented by nodes and coefficients by the gains of archs joing two nodes. 
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2.   Synthesis of passive networks 

The task of synthesis is to design the circuit structure and element values in such a way that the circuit 
possesses the required transfer function in s-domain [1,13,16]. The starting point is the given form of transfer 
function, which should be implemented using the required types of circuit elements. In this chapter we 
will consider the realization of the impedance or admittance transfer function implemented using the set 
of passive elements (resistors, inductors and capacitors). We assume ideal passive elements described by 
their impedances: resistor by resistance R, capacitor by impedance ZC=1/sC, inductor by impedance ZL=sL 
(including the magnetic coupling). In special cases gyrator (special passive 2-port network) is also allowed in 
practical implementation. 

3.1. Definition of passive elements 
Circuit elements can be classified into different categories. Among them we can recognize [4,7,16]: 

• One-port elements – they represent the simplest components, that have only two terminals to 

connect to. Examples: resistors, capacitors, inductors, diodes. 

• Multiport elements – the elements that have more than two terminals. Example: a transformer with 

four separate windings has 8 terminals and could be represented as a four-port element. 

• Two-port elements – the multiport elements of two ports: one is regarded as input and the second as 

output. Examples: gyrator, transistors. 

In this chapter we will be mainly involved in the synthesis task using one-port (or 2-terminal) passive elements. 
These are elements which are not a source of energy. The examples: resistances, capacitances and inductances. 
Formally the 2-terminal element is called passive, if the energy  w(t) of the element satisfies the condition 
[1,13,16] 

                                                                              (3.1) 
at initial condition w(t0)=0. On the contrary the element is called active, if at any point t the following 

condition is satisfied 

                                                                                  (3.2) 
The passivity definition may be extended also to N-ports. In such case the condition (3.1) is taken over all 

ports and written in the form 
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                                                                                 (3.3) 
The important property of passive elements is their stability. Passive elements are always stable, which 

means that their currents and voltages are always limited. 
 
3.2. Realizability conditions for passive RLC circuits 
Let us assume the circuit is described by the impedance Z(s) or admittance Y(s) of the rational form. Observe 

that Y(s)=1/Z(s). It means that poles of Z(s) are automatically zeros of Y(s) and vice versa. Assume the rational 
form of Z(s) as follows 

                                          (3.4) 
of the real and nonnegative coefficients ai, bi of the denominator and numerator, respectively. 
 
3.2.1. RLC circuits 
The impedance Z(s) given by (3.4) is realizable in the class of RLC elements if the following conditions are 

met [1,16] 

1. All coefficients ai, bi of Z(s) are real and positive. 

2. All zeros (the roots of numerator) and poles (the roots of denominator) are localed in left half-plane 

of complex variable s. In the case of location on the imaginary axis they are single. The residua in all 

poles are positive. 

3. The degree of L(s) and M(s) might be different by at most one. 

4. For Re(s) ≥0 the condition Re[Z(s)] ≥0 should be satisfied. 

 
Example 3.1 
We will check the realizability condition of RLC circuit described by  Z(s) given as follows 

• The first condition is automatically satisfied, since all coefficients are positive. 

• The zeros: z1=-2, z2=-4 and poles p1=-1 and p2=-3) are located in left half-plane, hence, the second 

condition is also satisfied. 

• The degrees of L(s) and M(s) are the same, so the third condition is also met. 

• To check the last condition we should determine Z(s) for s=σ+jω. After substitution this value of s to 

Z(s) we get 

It means that 
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At  σ≥0  we obtain  which is always positive. Hence also the fourth condition is satisfied. 
Therefore, the considered impedance form Z(s) is realizable using RLC elements. 

Sometimes the other realizability conditions are used in practice. They may be presented in the following 
form. 

1. All coefficients ai, bi of Z(s) are real and positive. 

2. The degree of L(s) and M(s) might be different by at most one. 

3. The rational function constructed on the basis of even parts Mp, Lp of polynomials M(s) and L(s) 

and odd parts Mn, Ln of the original polynomials 

                                                                  (3.5) 
presented in the form of continued fractions contains only elements of real values or linear form of s 

1. The value of the function MpLp-MnLn≥0 is non-negative for any s=jω. 

 
Example 3.2 
Let us consider impedance Z(s) given as follows 

• The first two conditions are evidently satisfied. 

• To check the third one observe that 

Hence the function (3.5) takes the form of continued fraction 

All variable coefficients in this expansion are positive. Hence, the third condition is also satisfied. 

• To check the fourth condition we must calculate the value of MpLp-MnLn for s=jω. This function is 

described as follows 

Synthesis of passive networks    23



It is evident now, that for same values of ω (ω2<44) the value of this function is negative. Therefore, the 
considered Z(s) is not realizable in the class of RLC elements. 

 
3.2.2. Realizability in class of RL elements 
The realizability conditions are significantly simplified if only 2-element classes are considered. In the case 

of RL elements the following conditions should be satisfied. 

1. Zeros and poles are single, located on the negative real axis and alternate 

2. The closest to the origin is the zero of Z(s) or pole of Y(s)=1/Z(s). 

 
Example 3.3 
Consider the impedance function Z(s) given as follows 

The zeros of this function are z1=0, z2=-2 and z3=-5, the poles: p1=-1, p2=-3. It is evident that all conditions 
are met. The closest to the origin is zero, hence, the function Z(s) is realizable in the class of RL elements. 

 
Example 3.4 
As the next example consider the function Z(s) given as follows 

The zeros of this function are: z1=-1, z2=-2, and poles p1=0, p2=-3, p3=-4. This time the closest to the origin 
is the pole, moreover, the poles and zeros do not alternate. Hence this function is not realizable in the class of 
RL elements. 

 
3.2.3. Realizability in class of RC elements 
The conditions of realizability of Z(s) in the class of RC elements can be expressed in the following form 

1. Zeros and poles are single, located on the negative real axis and alternate. 

2. The closest to the origin is the pole of Z(s) or zero of Y(s)=1/Z(s). 

The only difference to RL elements is that this time the pole is closest to the origin (in the previous case it was 
zero). 

 
Example 3.5 
Let us consider Z(s) given as follows 

The zeros of the function are: z1=-1, z2=-3, and poles: p1=0, p2=-2 oraz p3=-6. It is evident that all conditions 
are met. The closest to the origin is pole, hence, the function Z(s) is realizable in the class of RC elements. 

 
Example 3.6 
As the next example consider the function of the form 
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The zeros of Z(s) are: z1=0, z2=-j0.707, z3=j0.707 and poles: p1=j, p2=-j, p3=-j0.5, p4=j0.5. The zeros and poles 
are complex, which is not allowed in RL or RC classes. Therefore, this function is not realizable either in RL or 
in RC class. 

 
3.2.4. Realizability in class of LC elements 
The function Z(s) is realizable in the class of LC elements if the following conditions are met. 

1. The immittance (impedance or admittance) is expressed as the ratio of two polynomials, from 

which one contains only even and the second only odd powers. 

2. The degrees of  L(s) and M(s) should be different by one and both polynomials should contain all 

succeeding powers different from zero. 

3.  Zeros and poles are single, placed on imaginary axis jω, and alternate. 

 
Example 3.7 
Let us consider the impedance function 

The zeros of this function are: z1=0, z2=-j0.707, z3=j0.707 and poles: p1=j, p2=-j, p3=-j0.5, p4=j0.5. All 
conditions of realizability in  LC class are met. The function may be realized as connection of LC elements. 

 
3.3. Canonical structures of circuits in 2-class elements 
One of the synthesis methods is to define the basic 2-element structures, define their basic immittances, 

expand the given function into single fractions corresponding to these basic structures and associate them with 
the final circuit in the form of series connection for impedance Z(s) or parallel connection for admittance Y(s). 

In the case of RL elements we have two types of impedances: ZR= R for resistors and ZL=sL for inductors. 
Fig. 3.1 presents two connections of such elements: parallel RL for impedance Z(s) and series for admittance 
Y(s). 

Fig. 3.1 Canonical structures of RL elements. 
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Parallel structure of Fig. 3.1 is described by impedance 

                                                                                (3.6) 
and series structure of Fig. 3.1 by the admittance function 

                                                                                          (3.7) 
In the case of RC elements the canonical structures are presented in Fig. 3.2. The parallel connection is used 

in realization of impedance Z(s) and series connection for admittance Y(s). 

Fig. 3.2 Canonical structures for RC circuits RC. 

Parallel structure of Fig. 3.2a is described by the impedance ZRC(s) 

                                                                            (3.8) 
and series connection of elements (Fig. 3.2) by the admittance YRC(s) 

                                                                            (3.9) 
In an identical way we describe the canonical structures of LC elements. In this case we deal with the 

impedances of elements ZL=sL for inductor and ZC=1/sC  for capacitor. The canonical structures of LC elements 
are presented in Fig. 3.3. 

 
The parallel structure of Fig. 3.3 is described by impedance 

                                                                           (3.10) 
and the series structure of Fig. 3.3 by admittance 

                                                                           (3.11) 
Presenting the given Z(s) or Y(s) by the sum of fractions corresponding to any canonical form allows 

realizing the function as the series connection of canonical structures in the case of impedance function or 
parallel connection in the case of admittance function. 
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Fig. 3.3 Canonical structures of  LC elements. 

 
3.4. Foster method 
Foster method is applicable to two-element circuits only. The main idea behind it is to decompose the given 

function into the sum of partial fractions corresponding to the appropriate canonical 2-element structures 
and combine these canonical structures in the series (for impedance) or parallel (for admittance) connection 
[1,16]. 

 

• 4.1. Foster method in class of RL elements 

The impedance of RL class can be decomposed into the sum of the following terms 

                                                                               (3.12) 
where pk denotes the poles of the function under synthesis. This expression corresponds to the canonical RL 

sections of Fig. 3.4. 

                                                            (3.13) 
Each term of eq. (3.12) can be calculated using the following expressions 

                                                                       (3.14) 

Comparing expansions (3.12) and (3.13) allows identifying the values of RL elements. Namely, 
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Fig. 3.4 The general RL structure of Foster method in realization of impedance Z(s). 

                                                                                       (3.15) 
Example 3.8 
Consider the given function Z(s) realizable in RL class of elements 

The function possesses two poles: p1=-1 and p2=-3.  According to the presented above procedure we get 

It mean, that the impedance Z(s) can be presented in the form 

From  (3.14) we get: 

Full circuit structure realizing given Z(s) is shown in Fig. 3.5. 

In the case of admittance function Y(s) we decompose it into the form corresponding to series connection of RL 
elements (Fig. 3.1b). It means that the final form of Y(s) will be presented as follows 
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Fig. 3.5 The general RL structure, representing the given function Z(s). 

                                                                                  (3.16) 
Hence, the expansion of Y(s)  should be defined in the form 

                                                                                  (3.17) 
The coefficients of this expansion are defined as 

                                         (3.18) 
The last step is to associate the elements of (3.16) with the form of (3.17) and connect the canonical RC 

structures in the parallel fashion. 
 

• 4.2. Foster method in class of RC elements 

The impedance Z(s) should be now decomposed into the form 

                                                                               (3.19) 
where pk denotes the poles of the function under synthesis (negative values). This expression corresponds to 

the canonical RC sections of Fig. 3.6 and is described by 

                                                                       (3.20) 
The coefficients in expansion (3.19) can be calculated using the formulas 

                                                                            (3.21) 

 

Synthesis of passive networks    29



Fig. 3.6 The general structure of RC elements in Foster synthesis method. 

Comparing (3.19) with (3.20) allows identifying the values of RC elements 

                                                                                                (3.22) 
 
Example 3.9 
Let us illustrate the method by Z(s) given in the form 

There are three poles: p1=0, p2=-2 and p3=-6.  According to Foster procedure we get 

The given Z(s) can be presented as the sum of the first order partial fractions of rational form 

Hence, the elements of RC structure of Fig. 3.6 are calculated as follows: 

Fig. 3.7 presents the final RC circuit structure implementing the given Z(s). The number of capacitors is equal 
to the degree of the impedance function Z(s). Therefore, it is called the canonical realization. 
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Fig. 3.7 Final RC circuit realizing given  Z(s) in the example. 

In the case of admittance Y(s) the circuit is composed in the form of  the parallel connection of basic RC 
structures described as follows 

                                                                       (3.23) 
Hence, the expansion of given Z(s) should take the form 

                                                                             (3.24) 
where its elements are described by 

                                   (3.25) 
 
Example 3.10 
The synthesis procedure will be illustrated on the example of admittance  Y(s) given in the form 

There are two poles: p1=-2 and p2=-4. Hence the general expansion (3.24) is limited to 4 terms of the 
following coefficients 

Therefore, the given Y(s) has been expanded to the form 
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Fig. 3.8 presents the final circuit realizing the considered admittance Y(s). It is a parallel connection of the 
basic RC sections associated with the particular terms of the expansion. 

Fig. 3.8 The final form of RC circuit realizing admittance Y(s) in the example. 

 
 

• 3.3. Foster method in class of LC elements 

The impedance function satisfying the realizability conditions within the class of LC elements can be 
decomposed as follows 

                                                                      (3.26) 
where ωk means the angular frequency on the imaginary axis. Such expansion can be associated with the 

general LC circuit structure presented in Fig. 3.9, which can be described by the form 

                                                                       (3.27) 
Each term of this expansion (3.26) can be calculated using the following expressions 

                                                               (3.28) 

Comparing  (3.26) and  (3.27) allows identifying the element values of the circuit. We get 
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Fig. 3.9 The LC structure realizing impedance Z(s) in Foster method. 

                                                                                             (3.29) 
 
Example 3.11 
The procedure of LC synthesis will be illustrated by the exemplary function Z(s) 

According to Foster procedure we have 

It means, that given impedance Z(s) is expanded into the following partial fractions 

From (3.29) we identify the element values: 

Fig. 3.10 shows the final structure of LC circuit realizing given  Z(s). This is also the canonical realization 
(number of L and C elements is the same as the degree of the synthesized function Z(s)). 
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Fig. 3.10 The LC circuit structure corresponding to the given Z(s). 

In a similar way we can complete the synthesis procedure of LC circuit in the case of given admittance function. 
The YLC(s) is the parallel connection of series sections presented in Fig. 3.3, of the admittance form given as 
follows 

                                                                       (3.30) 
Hence, the expected form of expansion is as follows 

                                                                            (3.31) 
From  (3.28) and (3.30) we get 

 
3.5. Cauer method of synthesis of RLC circuits 
Cauer method of synthesis is a bit more general, since in some cases it allows to deal with 3-element circuits 

containing R, L and C. The method is based on expansion of the given immittance into continued fraction, 
which can be next associated with ladder form of basic RLC elements. 

A continued fraction is an expression obtained through an iterative process of representing a number as 
the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of 
its integer part and another reciprocal, and so on. 

The condition of realizability in ladder form is that all terms of continued fractions should correspond to 
the basic descriptions of particular passive elements: ZL=sL or YL=1/sL for inductors, ZC=1/sC or YC=sC for 
capacitors and ZR=R or YR=G for resistors. 

Two different forms of ladder network can be recognized. The first one corresponds to the structure 
presented in Fig. 3.11b. The continued fraction corresponding to it is given in the form [1,16] 

                                                                                  (3.32) 
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It can be obtained by dividing the polynomial of numerator by the polynomial of denominator. In the next 
steps we inverse both polynomials of the rest and continue the process of division. 

a) 

b) 

Fig. 3.11 Two canonical forms of ladder networks realizing: a) the impedance Z(s) and b) the admittance Y(s). 

Performing the same operations on the admittance we get the alike form for the admittance, corresponding to 
the circuit structure of Fig. 3.11b [1,16] 

                                                                                  (3.33) 
The process of division should be organized in a way to get all elementary elements  (Z1, Y2, Z3, Y4 …) of the 

positive numerical coefficients and of the form corresponding to the allowed passive elements: pure numerical 
value for resistor, ZL=sL for inductor and ZC=1/sC for capacitor. The process of division may be performed on 
the highest or the lowest powers of both polynomials. The only criterion is to get the final result satisfying the 
realizability conditions in the ladder form. 

 
Example 3.12 
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The procedure of Cauer synthesis will be illustrated on the example below 

In the first step we divide both polynomials according to the lowest power of polynomials. Hence, we get 

In the next step we continue division of the inversed rest (also according to the lowest powers). As a result 
we get 

In the next step we continue the same process on the inversed rest Z3r, dividing the polynomials according 
to the highest powers of polynomials. Hence, we get 

The next steps are performed on the inversed rests and all divisions are done according to the highest powers. 
As a result we get 

At the end we get the final form of continued fraction 

Comparing it with the general form described by (3.32) we can identify the succeeding elements of the ladder 
network. They are: Z1=1, Y2=1/s, Z3=s, Y4=s, Z5=s, Y6=1. Hence the final form of ladder implementing given 
Z(s) is shown in Fig. 3.12. 

It should be observed, that the process of division of polynomials is in general not unique. The only hint, how to 
organize it, is the final results, which should satisfy the realizability conditions of ladder using passive elements 
RLC. Only in the case of 2-class circuits the process of division is unique and repeatable in all stages (division 
either according to the highest or to the lowest powers). 

 
3.6. Brune method of RLC synthesis 
Brune method is applicable to a bit more general RLC circuit, since it applies also mutually couples 

inductances. The procedure of synthesis of  Z(s) in Brune method can be presented in the following way [1,16]. 

1. Extract all poles or zeros located on imaginary axis (if exist). It is done according to the Foster 

method for LC elements. After their extraction the impedance Z(s) is simplified to Z1(s). 
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Fig. 3.12 Ladder network form implementing the impedance Z(s) of the example. 

2. Determine the angular frequency ω0 for which  takes the minimum value. Then we 

extract the resistance R1 equal . As a result we get 

and further process of synthesis is done on this function. 

3. If R1 corresponds to ω0=0 or ω0=∞ the impedance Z2(s) is realizable in the class of two elements 

and can be completed using Foster or Cauer method. 

4. On the other side, if R1 corresponds to other value of ω0 we have to calculate Z2(jω0)= jX2 and 

extract the inductance L2=X2/ω0 (the value of L2 might be negative). After extraction of L2 the 

impedance is simplified to Z3(s)=Z2(s) – sL2. 

5. For such impedance Z3(s) the procedure starts from the first step until the function is reduced to 

zero. 

6. The final circuit is the series connection of extracted elements (if the impedances were under 

considerations) or parallel connection of elements in the case of admittances. If the extracted 

inductance is negative we have to substitute it by proper arrangement of magnetically coupled 

inductive elements. 

 
Example3.13 
As an illustrative example let us take the following impedance Z(s) 

• According to the first step of synthesis we see that there are no poles and no zeros on the imaginary 

axis. Therefore, Z1(s)=Z(s). 

• The second step requires to determine Re[(Z1(jω)]. After substituting s=jω  to Z1(s) we get 

Synthesis of passive networks    37



The minimum of the function requires derivative equal zero. Therefore, 

\displaystyle \frac{d\text{Re}[{{Z}_{1}}( j\omega )]}{d\omega }=0\text{  }\to \text{  }\frac{\text{(4}{{\omega 
}^{\text{3}}}-4\omega )\text{(}{{\omega }^{\text{4}}}\text{-3}{{\omega }^{\text{2}}}+4)-\text{(4}{{\omega 
}^{\text{3}}}-6\omega )\text{(}{{\omega }^{\text{4}}}\text{-2}{{\omega }^{\text{2}}}+2)}{{{({{\omega 
}^{\text{4}}}\text{-3}{{\omega }^{\text{2}}}+4)}^{2}}}=0 

After simplification of this function we get 

Solving it, we obtain 3 values of solution 

The value ω0 should correspond to the minimum of real part of Z1(jω). Hence we have  ω0=0.7655. 

Extracting the resistance  we get 

• Because the minimum corresponds to the finite frequency we move to the fourth stage of the 

procedure. According to it we have Z2(jω0)= jX2 and 

It corresponds to X2=ω0L2=0.296. Hence L2=0.296/0.7655=0.387. After extracting inductance L2 we get 

• The function Z3(s) has 2 zeros on the imaginary axis s2=-0.586. Hence further procedure will be 

performed on the admittance Y3(s)=1/Z3(s) (synthesis is always based on the poles and not on the 

zeros) 

• Extraction of poles s2=-0.586 is based on Foster method for LC circuit. Hence 

The defined LC section is described now as . Extracting it from the admittance 
Y3(s) we get Y4(s), where 

It corresponds to the impedance Z4(s)=1/Y4(s). Hence, Z4=-0.113s+0.047, which means series connection of 
resistance R4=0.047 and inductive impedance ZL4=-0.113s (negative inductance L4=-0.113). Fig. 3.13 presents 

38  Selected problems of circuit theory



the final form of circuit resulting from the synthesis method. Fig. 3.13a operates with the original negative 
inductances and Fig. 3.13b shows the practical implementation of these negative inductances by applying 
mutually coupled inductors (all circuit elements are now positive). 

 

a) 

b) 

Fig. 3.13 The circuit structure implementing the given impedance Z(s) of the example: a) the 
original structure with negative inductances and b) the final form of circuit with magnetically 
coupled positive inductances. 

 
Example 3.14 
In the next example we consider the impedance function of the third order, given as follows 

• This function possesses one zero on the imaginary axis s=0. We can extract it as a pole of admittance 

Y(s) 

Applying Foster method for LC circuit we get 
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After extraction of this inductance we get 

• In the second step we have to determine Re[(Y1(jω)]. After substitution of s=jω to the admittance 

Y1(s) we get 

The minimum of the function requires 

\displaystyle \frac{d\text{Re}[{{Y}_{1}}( j\omega )]}{d\omega }=0\text{  }\to \text{  }\frac{(-4{{\omega 
}^{4}}+8{{\omega }^{2}}+4)\omega }{{{\left[ {{(2-{{\omega }^{2}})}^{2}}+{{\omega }^{2}} \right]}^{2}}}=0 

Solving it we get three values of frequency, from which one is negative (not valid in further procedure) 

Choose ω0=0, for which the real part of admittance takes minimum value. Extracting 

 we get 

• Because the minimum has occurred at zero, further synthesis procedure will be done according to 

Foster method on the basis of Z2(s)=1/Y2(s) 

This impedance has two poles p1=0 and p2=-3. After extracting the first pole we get 

The extracted impedance is equal . The residual impedance Z3(s) is now described in the form 

• The first term of this impedance function corresponds to the parallel connection of resistor and 

inductor. Hence, 

The second term describes the parallel connection of resistor and capacitor. Hence, 
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Fig. 3.14 presents the final form of Brune circuit in implementation of the given function Z(s) of the example. 
 

Fig. 3.14 The structure of Brune circuit realizing impedance Z(s) 

3.7. Darlington method of synthesis of RLC circuit 
Darlington method is based on the lossless 2-port loaded on output port by the resistor R. The general scheme 

of Darlington structure is shown in Fig. 3.15. 

Fig. 3.15 Darlington structure used in synthesis. 

 
 
The procedure assumes the impedance description of the 2-port network by the matrix Z. 

(3.34) 
Input impedance of the 2-port loaded by resistor R can be expressed in the form 

                                        (3.35) 
The given impedance Z(s) should be transformed to the form, which allows identifying the impedance matrix 

parameters defined by (3.35). 
Let us introduce the even and odd parts of the impedance Z(s) as Mp, Lp (even polynomials of denominator 
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and numerator, respectively), and Mn, Ln (odd parts of the corresponding polynomials). In such case the 
impedance function  Z(s) may be presented in the form 

                                                        (3.36) 
Assuming R=1, from the comparison of (3.35) and (3.36), we can identify the particular element of the 

impedance matrix Z. 

                                              (3.37) 
In identification of Z12 and Z21 parameters the significant is the reciprocity (invertibility) of the 2-port. The 

2-port is reciprocal if Z12=Z21. At satisfaction of this condition we get 

                                                                            (3.38) 
It means that the term LpMp-LnMn should be expressed as the squared polynomial. 
The additional problem is the value of resistance R (up to now assumed as unity). The equation (3.36) can 

be scaled by an arbitrary value of R. After scaling, the parameter Z11 will not be changed. The parameter Z22 

will be scaled by R while the parameters Z12 and Z21 will be scaled by . After such scaling we get the 
transformed values of parameters of Z matrix. 

                                                                                                   (3.39) 
The matrix  Z can be now expressed in the form 

(3.40) 
This matrix will be implemented in a proper circuit form using RLC elements. 
The reciprocity condition of 2-port network is not always possible. In such case we can introduce the 

additional passive element in the form of gyrator, which represents the non-reciprocal 2-port. It is described by 
the following matrix equation 

(3.41) 
If the 2-port is not reciprocal the product Z12Z21 can be expressed in the form 

                                      (3.42) 
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The terms Pp and Pn represent the polynomials of the even powers (Pp) or odd powers (Pn). They should be 
adjusted in a way to satisfy both sides of eq. (3.42).  From the comparison of both  sides we get 

                                                                                     (3.43) 
After this substitution we get the impedance matrix Z in the form 

(3.44) 
The general procedure of implementation the Z matrix in a circuit form will require the application of 

RLC elements, magnetically coupled coils and gyrator. The computation of the values of these elements 
needs decomposition of the matrix elements into the elementary submatrices. Due to the impedance matrix 
description they correspond to the series connection of the appropriate 2- ports. It will be illustrated on the 
following example. 

 
Example 3.14 
Let us take the impedance  Zin (s) in the form 

From the given form of Z(s) it follows 

At R=1 we get 

The expression Z12Z21=LpMp-LnMn  does not allow to be presented as the squared polynomial. Hence the 
2-port is not reciprocal and needs application of gyrator. According to the procedure for non-reciprocal 2-port 
we introduce even and odd polynomials defined in the way 

The second order polynomial  P(s)=Pp(s)+Pn(s) is needed. Hence, Pp=s2+a0, Pn=a1s. From the comparison of 
both sides of the last equation we get 

Hence, 

As a result the polynomials Pp i Pn are of the form 
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The parameters Z12 and Z21 are then equal 

The impedance matrix Z is expressed in the form 

which can be presented as the sum of the following submatrices 

All of them represent particular 2-ports, connected in series. The first term (matrix Z1) represents the 
magnetically coupled inductors. The second one  (matrix Z2) should be realized by using capacitors. The third 
term (matrix Z3) represents gyrator. 

The basic limitations are visible in realization of the second term, since the capacitance matrix should be 

hyperdominant. In its present form  it is not. To provide the hyperdominance
condition the resistance scaling is necessary. 

The scaling procedure changes the elements of Z matrix in the following way 

The resistance R should be adjusted in such way, that  (the parameters of matrix Z2), hence, 

. However, this scaling should be done for all submatrices: Z1, Z2 and Z3. Applying 
R=2 we obtain the matrix  Z in the form, satisfying the hyperdominance conditions for Z2 

Its circuit implementation is presented in Fig. 3.16. It is formed by three 2-ports connected in series. 
 

 
3.8 Exercises 
Check realizability conditions of given function Z(s) using RL or RC elements: 

a) 
Solution: 
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Fig. 3.16 Final form of circuit realizing the given impedance Zwe(s) in 

Darlington scheme. 

The realizability conditions in RC circuit are met, since the coefficients of numerator and denominator are 
positive, the poles and zeros are real and alternate and closest to the origin is the pole of Z(s) s=-1. 

b) 
Solution: 
The function is not realizable in RC nor RL two element circuit, since the poles and zeros do not alternate. 

The zeros are: z1=0, z2=-3. Poles: s1=-2, s2=-4, s3=-5. Poles -4 and -5 are not separated by any zero. 

Synthesize function 
Solution: 
The impedance Z(s) may be presented in zero-pole form as follows 

where zeros are: -1, -5 and poles: 0, -3. It is evident that this function satisfies the realizability condition using 
RC elements. Therefore the expected first order expansion of this function may be presented in the form 

where 
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It is evident now that R0=a=1Ω,  C0=1/b=3/5F,  C1=1/d=3/4F, R1=1/(3C1)=4/9Ω. The final circuit structure is 
presented in figure  below. 

Fig. 3.17  Foster circuit realizing the given impedance Z(s) 

 

Synthesize function  using Foster method. 
Solution: 
The impedance Z(s) may be presented in zero-pole form as follows 

The function is realizable using LC elements, since the poles and zeros are on the imaginary axis and 
alternate. Therefore the expected expansion of this function may be presented in the form 

where 

Therefore we get 
L0=a=1H,  C0=1/b=1F,    C1=1/d=1F,  L1=1/C1=1H 
The LC circuit structure implementing the given impedance function Z(s) is presented in figure below. 

Fig. 3.18 Foster LC circuit implementing given Z(s). 
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1. Decompose Z(s) of ladder network into continued fraction form 

Fig. 3.19 The ladder RLC circuit 

 Solution: 
Dividing numerator by denominator and inversing the residue we obtain finally the continued fraction form 

of Z(s) 

 

1. Apply Cauer method to realize given impedance function Z(s) 

Solution: 
Dividing the polynomials of numerator and denominators by the highest order we get 

This continued fraction corresponds to the ladder network presented in figure below. 

Fig. 3.20 Cauer ladder circuit structure implementing 

given Z(s) 

 
 
3.9 Basic definitions 
Active element – element representing source of energy such as independent  and controlled sources. 
Brune method – method of synthesis of RLC circuits containing mutually coupled inductors. 
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Canonical section – the parallel or series connection of two types of elements: RL, RC or LC, which are 
used in Foster method. 

Cauer method – method of synthesis of RLC circuits based on expansion of the given immittance into 
continued fraction. The resulting expansion is transformed into a ladder network of basic RLC elements. 

Continued fraction – the expression obtained through an iterative process of representing a rational 
function of two polynomials as the sum of the result of their division according to the highest or lowest power 
and the reciprocal of the rest, then repeating the process on the reciprocal of this rest, and so on. 

Darlington method – method of synthesis of RLC circuits containing mutually coupled inductors and 
gyrators. 

Foster method – method of synthesis based on decomposition of given immittance into the sum of the first 
order terms (partial fractions) and association of these terms with particular canonical sections containing RL, 
RC or LC elements. 

Gyrator – a passive, linear, lossless, two-port electrical network element It is non-reciprocal 2-port. It inverts 
the current-voltage characteristic of an electrical component or network. The impedance is also inverted. In 
other words, a gyrator can make a capacitive circuit behave inductively, a series LC circuit behave like a parallel 
LC circuit, and so on. 

Hyperdominant matrix – matrix satisfying condition that the sum of the absolute values of off-diagonal 
element in each row is smaller than the diagonal element value. 

Impedance matrix – the matrix describing the behavior of any linear electrical network (for example 
2-port) that can be regarded as a black box with a number of ports (pair of electrical terminals). On the left side 
of description we have port voltages and on the right – the port currents. 

Ladder network – the string of many electrical elements (resistors, capacitors, inductors) connected in a 
structure resembling ladder. 

Passive element –  the element which can’t produce energy (increase the power of a signal). Passive 
components include two-terminal components such as resistors, capacitors, inductors and four-terminal 
components such as transformers or gyrators. 

Realizability conditions – the collection of conditions that should be satisfied in converting the given 
immittance function into the circuit structure realizable in practice. 

Synthesis – the process of converting a given transfer function form into a particular circuit structure 
implementation. 
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3.   Electrical filters 

The important task in engineering practice is frequency filtration, performed by the devices called filters. 
The task of filter is to pass or stop signals within defined frequency range. Filters might be built in analog 
or digital implementation. This chapter will consider only the analog technology. In such approach filter is 
described by the rational transfer function H(s), where s represents the complex frequency. Applying s=jω we 
get frequency characteristic H(ω)=H(s=jω) of the filter. It is the complex function in frequency domain, which 
might be represented as magnitude and phase characteristics. 

2.1. Fundamentals of filter description 
Transfer function of analog filter is represented by the rational function H(s) assumed usually in the form 

 (2.1) 
Assuming s=jω, we get H(ω)=H(s=jω), which might be represented in the polar form[4,16] 

 (2.2) 

in which  is the magnitude characteristic and φ(ω) phase characteristic. Magnitude 

characteristic is of even and phase of odd character with respect to frequency. It means 
and φ(ω)=-φ(-ω). Magnitude characteristic is usually expressed in a logarithmic form 20log10(abs(H(jω)) using 

decibel dB units. Together with the phase characteristic they are called Bode plot [7]. 
In classical filtering process we define so called ideal filters, which are able to stop or pass the signals in 

certain ranges of frequency. Ideal filter assumes  in passband and  in stopband. In 
classical filtration four types of filters are typically recognized. 

• Low-pass filter 

• Band-pass filter 

• High-pass filter 

• Band-stop filter 

From the point of view of phase characteristic we can recognize also the filters of linear character (constant 
group delay) for which output signal y(t) is only scaled and delayed version of the input signal u(t). It means 
y(t)=Au(t-t0)). The other type of filters are the allpass filters, which have constant magnitude characteristic 

equal 1 and phase characteristic which is function of frequency φ(ω). 
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In this chapter we will concentrate only on filters from the magnitude point of view. Fig. 2.1 presents the 
magnitude ideal characteristics of the above mentioned four types of filters [14,16]. 

a) b) 

c) d) 

Fig. 2.1. Magnitude characteristics of 4 types of filters: a) low-pass, b) band-pass, c) band-stop, d) high-pass. 

In the case of low-pass and high-pass filters the single cutoff frequency fo (often represented by angular 

frequency ω0) is defined. In the case of band-pass and band-stop filters two cut-off frequencies are recognized: 

the lower ω1 and higher ω2, as shown in Fig. 2.1. 

Practical implementation of ideal characteristics is impossible, because it would require infinite number of 
elements. Therefore, the approximation of ideal characteristics is used in practice. In such approach instead of 
gain 1 in passband the value smaller than 1 (assumed by the user) is accepted. In a similar way the value of zero 
gain in stopband is substituted by the higher one, still accepted from practical point of view (for example 10-3). 
Moreover, the transit from passband to stopband must be smooth (not of jump character). It means introduction 
of the third band, called transit band. 

2.2. Approximation of frequency characteristics 
The approximation formulas should allow controlling the shape of characteristics in passband and stopband. 

The most important is to preserve the edges of characteristics in the boundary of pass and stop bands. To 
simplify the approximation process the design formulas are built only for low-pass filters. All other types of 
filters (band-pass, band-stop and high-pass) follow from the simple transformations defined on the basis of the 
designed low-pass filter. 
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In practical approximation procedure concerning the low-pass filters four parameters should be assumed 
first: 

• Frequency fp (angular frequency ωp) of the highest value of passband frequency. It corresponds to 

the frequency at which the maximum attenuation Rp is met or, in other words, the gain achieves the 

minimum required value Gp. Note that Gp=1/Rp in linear scale or Gp=-Rp in logarithmic scale. 

• Frequency fs (angular frequency ωs) of the lowest value of stopband frequency. It corresponds to the 

frequency at which the minimum attenuation Rs is met, or in other words, the gain achieves the 

maximum allowed value Gs. Similarly as before Gs=1/Rs in linear scale or Gs=-Rs in logarithmic scale. 

• Maximum attenuation Rp (minimum gain Gp) in passband, expressed usually in logarithmic scale in 

decibels (  [dB]). 

• Minimum attenuation Rs (maximum gain Gs) in stopband, expressed usually in decibels. 

Fig. 2.2 illustrates the interpretation of the defined above parameters in linear scale (the upper subplot) and 
in logarithmic scale in dB (the bottom subplot) for the low-pass filters. The shape of filter characteristic in 
passband (the range [Gp, 1] or in stopband (the range [0, Gs] does not matter in practice. It might be maximally 

flat or contain some oscillations (ripples) within the specified ranges. 

Fig. 2.2. Graphical interpretation of the parameters of low-pass filter, which are the basis in approximation 
procedure: a) linear scale, b) logarithmic scale. 

The approximation procedure should result in a stable system, which means that all poles should be placed 
in left half-plane of the complex frequency s=σ+jω. Moreover, the results should be presented in the form of 
rational transfer function H(s). Three different approaches to approximation are typically applied in practice 

• Butterworth approximation leading to maximally flat magnitude characteristic. 

• Chebyshev approximation (equiripple magnitude characteristics in the passband or the stopband). 

• Elliptic approximation (equiripple magnitude characteristics in both the pass and stop bands). 

2.2.1. Butterworth approximation 
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Butterworth filters assume in the initial step the following approximation formula [14,16] 

 (2.3) 
In which n is the future order of filter, ε is the ripple factor defining the maximum allowed attenuation 

in passband (ε=1 corresponds to the attenuation equal 3dB for the angular frequency ω=ω0), and ω0 is the 

normalized cut-off frequency of the filter (more often in this stage we assume ω0=1). 

Observe that ε=1 leads to , ,  (Rp=3dB in 

logarithmic scale). The only parameter in such case (ε=1) is the order n of the filter. It should satisfy the 
condition 

 (2.4) 

The process of approximation is simplified to transform the proposed form of  defined by eq. (2.3) 
into the rational form H(s). It is done by using the following relation 

 (2.5) 
The poles sk of this function are described by the following formula 

 (2.6) 
At ω0=1 the poles are placed on the unity circle symmetrically in the left and right half-plane. The poles 

placed in left half-plane are associated with the transfer function H(s) 

 (2.7) 
for k=0, 1, 2, …, n-1 and poles in right half-plane with H(-s). Only H(s) is of interest for us. 
As a result the identified transfer function is defined in the form 

 (2.8) 
At ω0=1 this function assumes the form H(s)=1/M(s), where M(s) is the polynomial of nth order. Matlab uses 

two functions to approximate Butterworth filter. They are called buttap or butter with the option ‘s’ [12]. Table 
2.1 shows the formulas of Butterworth transfer function H(s) of ε=1 for n=1, 2, 3, 4, generated by buttap of 
Matlab. 

Table 2.1. Transfer function of Butterworth approximation of different order and Rp=3dB. 
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n 

1 

2 

3 

4 

Fig. 2.3. depicts the magnitude characteristics of Butterworth filter for different orders: n=2, 6, 10 and Rp=3dB. 

The characteristic is maximally flat. The higher the order the more steep is transfer form passband to stopband 
range. 

Fig. 2.3. Magnitude characteristics of Butterworth filters for n=2, 6, 10 and Rp=3dB. 

2.2.2. Chebyshev approximation 2.2.2. Chebyshev approximation 

In the case of Chebyshev approximation there are two solutions: type I and type II (the latter called also inverse 
form). In the first case the initial form of approximation of magnitude is given as follows [14,16] 

 (2.9) 
where Tn(x) means Chebyshev polynomial of the first kind and nth order. The parameter ωp is the cutoff 
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angular frequency of low-pass filter, and ε the ripple factor characterizing allowed attenuation in passband. The 
Chebyshev polynomials of the first kind are defined by the recurrence relation 

 (2.10) 
for n=2, 3, 4, … at T0(x)=1, T1(x)=x. Table 2.2 presents the forms of Chebyshev polynomials of the first kind 

and 4 different orders n=1, 2, 3, 4. 
Table 2.2. Chebyshev polynomials of the first kind. 

n Tn(x) 

1 x 

2 2x2-1 

3 4x3-3x 

4 8x4-8x2+1 

It is evident now, that magnitude characteristic of H(s) defined by (2.9) satisfy conditions  for 

even values of n and  for odd n. Similarly we have  for all 
values of n. The values of ripple factor ε and the order n of the required filter are calculated as follows 

 (2.11) 

 (2.12) 

Further procedure transforming  into H(s) is similar to the Butterworth procedure. However, this 
time the poles are located on the ellipse (not the circle as in Butterworth case). Matlab uses two functions to 
approximate Chebyshev filter of type I. They are called cheb1ap or cheby1 with the option ‘s’ [12]. Table 2.3 
shows four expressions for Chebyshev transfer function H(s) for n=1, 2, 3,4. 

Table 2.3. Transfer functions of Chebyshev filter for ε=1 (Rp=3dB) and n=1, 2, 3,4. 
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4 

Fig. 2.4 presents the magnitude characteristics of Chebyshev filter of kind I for chosen values of n=2, 6, 10 
and Rp=1dB. Equal ripples in the passband and flat characteristic in stopband can be observed. The number of 

ripples depends on the order of filter. The higher the order n the steeper is transfer from passband to stopband 
range. For any value of n the Chebyshev characteristic is more steep than Butterworth one. 

. 

Fig. 2.4. Magnitude characteristics of Chebyshev filters of the type I for n=2, 6, 10 and value Rp=1dB. 

The second type of Chebyshev filter (inverse filter) is also applied in practice. It starts from the approximation 
formula given as follows [14,16] 

 (2.13) 
The parameters have the same sense as in type I filter. The poles pki of the inverse filter are strictly associated 

with the poles pk of type I filter and are related in the form 

 (2.14) 
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There are two Matlab functions used in designing type II Chebyshev filter: cheb2ap or cheby2 with the option 
‘s’. The magnitude frequency characteristic of inverse filter is maximally flat in passband and of equal ripples 
in the stopband. 

2.2.3. Elliptic approximation 
The starting point in elliptic approximation is assumed in the form [14,16] 

 (2.15) 
where ω0 is the cut off angular frequency (usually ω0=1) , ε the ripple factor and Rn(ω/ 0) represents the 

rational function of nth order. In this approximation the Rn(ω) is described as follows: 

• for odd value of n 

 (2.16) 

• for even value of n 

 (2.17) 
On the basis of design specifications given by four parameters (ωp, ωs, Rp, Rs ) the order n and ripple factor ε 

should be calculated. The ε value is calculated from the same expression as in the previous approach 

 (2.18) 
The order n of the filter requires more steps. Assuming k=ωp/ωs the following steps should be done [19] 

latex (2.19) 
Finally the order n can be determined as follows 

 (2.20) 

The procedure of transferring  to H(s) is more complicated. The details can be found in specialized 
books , for example handbooks devoted to filter design [14,19]. Matlab has developed two functions that might 
be used in generating elliptic approximation: ellipap or ellip with option ‘s’. Table 2.4 presents exemplary forms 
of H(s) for different orders of filter n=1, 2, 3, 4 and Rp=3dB (ε=1) and Rs=40dB. 

Table 2.4. Transfer functions of elliptic filters for ε=1 (Rp=3dB) and Rs=40dB 
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Fig. 2.5 presents the magnitude characteristics of elliptic filters for three different orders: n=2, 6, 10, and ω0=1, 

Rp=1dB and Rs=40dB. Equal ripples in both: passband and stopband are observed. The number of oscillations 

depends on the value of n. For the values of n>2 we observe very steep transfer from passband to stopband. At 
n=10 the filter resembles the ideal characteristic. 

Fig. 2.5. Magnitude characteristics of elliptic filters for n=2, 6, 10 and Rp=1dB, Rs=40dB. 

Comparing the characteristics of three presented filters it is evident that for the same order the best (closest 
to ideal) is the elliptic filter. The least ideal is the Butterworth approximation. This is well seen on the example 
of 6th order filters (Fig. 2.6) of the same specifications (n=6, ω0=0.5, Rp=1dB, Rs=40dB) but applying different 

approximations. 
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Fig. 2.6. Comparison of magnitude characteristics of filters according to different approximations. Filter 
specifications: n=6, ω0=0.5, Rp=1dB, Rs=40dB. 

Table 2.5 presents the required values of order n of these three filters at constant values of Rp=3dB i Rs=40dB 

and changing values of ωp and ωp. The order of filters depend on the ratio ωs/ωp which were assumed as 2, 1,5 

and 1,05 (the steepest transfer from passband to stopband). 
Table 2.5.Comparison of required order of Butterworth, Chebyshev and elliptic filters for the same 

specifications: ωp, ωp, Rp=3dB i Rs=40dB. 

Butterworth filter Chebyshev filter Elliptic filter 

ωs/ωp=2 n=13 n=8 n=3 

ωs/ωp=1,5 n=23 n=11 n=4 

ωs/ωp=1.05 n=189 n=32 n=8 

The advantage of the elliptic approximation is visible irrespective of the required values of design 
specifications. 

2.3. Frequency transformations 
The presented above design procedures have been defined for only low-pass, normalized filter of ω0=1. 

Transformation of this designed filter to the proper type and real values of frequency parameters needs only 
small amount of computations, which will be presented in the next sections. 

2.3.1. Transformation of normalized low-pass filter to filter of real parameters 
The normalized low-pass filter of ω0=1 will be transformed to the low-pass filter of the real required 

frequency specifications ω0r using the following substitution 

 (2.21) 
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The unity angular frequency ω0=1 will be transformed to the real one ω0r without the change of the filter 

order. 
Example 2.1 
Let us illustrate this procedure on the example of Butterworth filter of the second order 

Applying ω0r=1000 we get the final form of transfer function 

Fig, 2.7 shows the comparison of both filters: the normalized (upper) and the real one (bottom). 

Fig. 2.7. Magnitude characteristics of the low-pass Butterworth filter of second order. The upper plot presents 
the normalized and bottom – the real characteristic after transformation. 

Analog filters are implemented using RLC elements arranged in specific structure. Usually the values of 
elements are calculated for normalized transfer function. Let us assume that their computed values are equal 
Rn, Ln and Cn. Frequency transformation does not change the value of resistors, however, does transform the 

capacitance and inductance values. Changing s to s/ω0r transforms L and C to the real values according to the 

following relations 

   (2.22) 
It means that Ln is changed to L=Ln/ω0r, and Cn to C=Cn/ω0r, leaving the resistance values unchanged (they 

don’t depend on frequency). 
2.3.2. Transformation of normalized low-pass to real high-pass filter 
The normalized low-pass filter of ω0=1 is transformed to high-pass type of real ω0r by applying the following 

substitution [14,16] 
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 (2.23) 
This transformation changes not only the normalized frequency ω0=1 into the required one ω0r but 

transforms also the type of the filter to high-pass. The order of the transfer function remained the same. 
Example 2.2 
To illustrate the procedure we will start from the same 2nd order Butterworth filter of the normalized 

transfer function 

Let us change it to the high-pass real filter of ω0r=1000. Application of eq. (2.23) leads to the following 

transfer function of high-pass characteristic 

Fig. 2.8 presents both magnitude characteristics: the normalized low-pass and the transformed high-pass. 

Fig. 2.8. Magnitude characteristics of the filters: the normalized low-pass prototype (upper) and the 
transformed high-pass (bottom). 

Transformation of frequency changes also the character and values of L and C elements in analog 
implementation of the filter according to the expressions 

    (2.24) 
It means that normalized Ln is converted to the capacitance C=1/(ω0rLn), and normalized Cn into inductance 

L=1/(ω0rCn). The resistor was not changed after the transformation. 
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2.3.3. Transformation of normalized low-pass to real band-pass filter 2.3.3. Transformation of normalized low-pass to real band-pass filter 

Transformation of the normalized low-pass filter into real band-pass one of the boundary frequencies ω1 and 

ω2 needs introducing two new parameters: the width B of the pass band and the center frequency ω0. They are 

defined as follows [14,16] 

   (2.25) 
In such case the normalized low-pass filter is converted to band-pass filter of real values of parameters using 

the following substitution 

 (2.26) 
Observe that in this case the order of the resulting band-pass filter has been doubled with respect to the 

normalized prototype. 
Example 2.3 
To illustrate the procedure we will start from the same 2nd order Butterworth filter of the normalized 

transfer function 

Assume ω1=100 and ω2=200. At such values B=100 and ω0= 141.42. Application of eq. (2.26) leads to the 

following solution 

Fig. 2.9 presents both magnitude characteristics: the normalized low-pass and the transformed band-pass. 

Fig. 2.9. Magnitude characteristics of the filters: the normalized low-pass prototype (upper) and the 
transformed band-pass (bottom). 
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Transformation of frequency changes also the character and values of L and C elements in analog 
implementation of the filter according to the expressions 

   (2.27) 
It means, that in analog implementation of such filter at application of RLC elements, the normalized 

inductance Ln is converted to the series connection of  and inductance . On the other 

side the normalized capacitance Cn of the prototype filter is converted to the parallel connection of inductance 

 and capacitance . The resistors have been left without changes. 
2.3.4. Transformation of normalized low-pass to real band-stop filter 
Transformation of the normalized low-pass filter into real band-stop one of the boundary frequencies ω1 and 

ω2 needs, similarly as in the case of previous transformation, introducing two new parameters: the width B of 

the stop band and the center frequency ω0 [14,16] 

  (2.28) 
In such case the normalized low-pass filter is converted to band-stop filter of real values of parameters using 

the substitution 

 (2.29) 
In this case the order of the resulting band-stop filter has been doubled with respect to the normalized 

prototype. 
Example 2.4 
As an example consider the 2nd order normalized Butterworth filter described by 

Assume in transformation ω1=100 and ω2=200. It means B=100 and ω0= 141.42. After applying (2.29) we get 

the final form of band-stop filter 

Fig. 2.10 presents both magnitude characteristics: the normalized low-pass and the transformed band-stop. 
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Fig. 2.10. Magnitude characteristics of the filters: the normalized low-pass prototype (upper) and the 
transformed band-stop (bottom). 

Transformation of frequency changes also the character and values of L and C elements in analog 
implementation of the filter according to the expressions 

  (2.30) 
It means that in analog implementation of such filter at application of RLC elements the normalized 

inductance Ln is converted to the parallel connection of  and inductance . On the 

other side the normalized capacitance Cn of the prototype filter is converted to the series connection of 

inductance  and capacitance . The resistors are left without changes. 
The presented frequency transformations did not change the values of resistors. In practical calculations of 

element using the normalized transfer function the values of resistors are usually close to one, not practical 
from implementation point of view. Therefore, the resistance scaling is necessary. Observe, that voltage transfer 
function is defined as the ratio of impedances. Therefore the application of resistance scaling does not change 
the coefficients of transfer function. However, this time all impedances representing also capacitors and 
inductors should be scaled in the same way. 

Assume all element values after design procedure were normalized and equal Ln, Cn, Rn, respectively. Their 

corresponding values in real life will be denoted with index r. Assume resistance scaling ratio equal kr and ratio 

of frequency scaling equal kf. The scaling ratio is defined in the following way 
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 (2.31) 
Scaling the normalized values to the real ones will be done using the following expressions 

  (2.32) 
Example 2.5 
Let us assume normalized values of elements given as follows: R1n=0.5Ω, R2n=0.7Ω, C1n=2F, C2n=1.5F, L=1H 

(not practical values in implementation). Assume scaling coefficients as following: kr=104 (resistance equal one 

will be changed to 10k Ω) and kf=105 (unity frequency changed to 105). Applying these values to eq. (2.32) we 

get their real counterparts as follows 
R1r=5kΩ, 

R2r=7kΩ, 

C1n=2nF, 

C2n=1.5nF, 

L=0.1H 
2.4. Higher order filters in cascade connection of biquadratic blocks 
As a result of approximation procedure we obtain the transfer function H(s)=L(s)/M(s) which represents 

stable system (the poles in left half-plane). However, the order of polynomial of denominator is usually high. 
In practical implementation of the coefficients of this polynomial the values of resistances, capacitances and 
inductances are never ideally equal to the computed ones. Therefore, the poles of the system might move to the 
right half-plane of complex frequency, which means unstable operation of the system. 

Observe that not ideal setting the values of elements will change the coefficients of the denominator M(s) 
and also the pole locations 

 (2.33) 
Because of 

 (2.34) 
we get M‘(s) instead of M(s), where 

(2.35) 
The poles pi have been changed by Δpi according to relation 

 (2.36) 
The significant is sensitivity of pi with respect to ak. We determine it using the relation 
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 (2.37) 
If we take into account 

 (2.38) 
for s=pi we get the final form of sensitivity formula 

 (2.39) 
Observe that in practical realization of H(s) the differences (pi-pl) are very small. The higher the order of the 

filter the larger is the value of sensitivity. The smallest possible one it achieved for n=2 (biquadratic filter). In 
such case (two poles p1 and p2) we get 

 (2.40) 
for k=0, 1 and 2. Therefore, to minimize sensitivity of poles to the coefficient values we should decompose 

the higher order transfer function into second order section (biquadratic) and combine them in cascade. As a 
result the original transfer function of higher order may be presented as the product of functions of second 
order. 

 (2.42) 
This decomposition is done through paring the terms containing the complex conjugate poles. 
In similar way the zeros (roots of numerator) are paired and create the second order polynomials of the 

biquadratic sections. Final form of such decomposition into biquadratic sections connected in cascade is 
presented in Fig. 2.11. 

Fig. 2.11. Cascade connection of second order section. 
Example 2.6 
Let us assume elliptic filter of 6th order of ω0=1, Rp=1dB, Rs=40dB. The following Matlab lines generate the 
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polynomials of numerator and denominator of higher order (the first line) and then decompose into second 
order sections (second line). 

[L,M]=ellip(6,1,40,1,’s’) 
[sos,g]=tf2sos(L,M) 

As a results we get 

L = 0.0100 0.0000 0.1173 0.0000 0.2800 -0.0000 0.1860 M = 1.0000 0.9154 2.2378 1.4799 1.4317 0.5652 0.2087 

which corresponds to the transfer function of the 6th order 

The second command generates 

sos = 

1.0000 0.0000 8.7778 1.0000 0.6310 0.2678 

1.0000 0.0000 1.7081 1.0000 0.2368 0.7799 

1.0000 -0.0000 1.2406 1.0000 0.0476 0.9994 

g = 

0.0100 

which is interpreted as second order sections in the following way 

Each of these sections is implemented in an independent way. Therefore, the coefficients of one section do 
not influence the other sections. The computed poles of the biquadratic sections form the following pairs: 

p1=-0.0237 + j0.9995, p2=-0.0237 – j0.9995, 

p3=-0.1185 + j0.8751, p4=-0.1185 – j0.8751, 

p5 =-0.3155 + j0.4101, p6 =-0.3155 – j0.4101 

which are represented in the succeeding biquadratic functions. 
2.5. Biquadratic sections 
The biquadratic section (called often “biquad”) is presented in general form as follows 

 (2.43) 
In this form Q means the quality factor and ω0 – the characteristic center angular frequency. Four specific 

forms of biquads are usually considered 

• Low-pass filter 

 (2.44) 

• Band-pass filter 
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 (2.45) 

• High-pass filter 

 (2.46) 

• Band-stop filter 

 (2.47) 
All types of filters have the same form of denominator. They differ only by the polynomial of numerator. 

The parameters ALP, ABP, AHP represent the gain factor of the particular type of filter. In the case of low-pass 

filter this value corresponds to ω=0, in the case of band-pass to ω=ω0, and in high-pass to ω=∞. Each of these 

biquadratic filters has found many practical electronic implementations. We will concentrate in this work to 
only KHN and the multiloop structure, which were analyzed in the first chapter using SFG. 

2.6. Implementation of biquadratic sections using KHN structure 
The most often used electronic circuit in biquad implementation is the KHN structure (Fig. 2.12) applying 

three operational amplifiers. 

Fig. 2.12. Circuit structure of KHN 
The circuit is able to implements three different types of the biquads in the same structure, depending on the 

assumed output node. They are defined as follows 

 (2.47) 
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 (2.48) 

  (2.49) 
The denominator M(s) in all transfer functions is the same and expressed in the following way 

 (2.50) 
The fourth type of filter (the band-stop) can be implemented as the sum of the low-pass and high-pass filter 

signals. The important point is that above equations are the starting points in filter design procedure. It can be 
easily proved that 

 (2.51) 

 (2.52) 

 (2.53) 

 (2.54) 

 (2.55) 
In the design procedure of second order filters we want to obtain the required value of Q and characteristic 

center frequency ω0. The gains of the particular filter types are defined by equations (2.53-2.55). The design is 

aimed in calculating the values of elements providing the required values of Q and frequency ω0. Usually the 

following simplifying constraints are assumed 

  (2.56) 
These parameters can take any values, which are required from technological point of view. At such 

assumption we get finally 

The values of R and C may be arbitrary, for example R=10kΩ, C=1nF. In this way we obtain immediately the 
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real values of parameters of the filters, without the need to de-normalize them. The main advantage of KHN 
structure is possibility of realizing three types of filters in the same structure (changing only the output node). 
Moreover, the parameters of biquad (cutoff frequency and quality factor) are fitted in an independent way using 
different element s of the circuit. Changing the value of Q does not influence the cutoff frequency. 

2.7. Example of biquadratic filter in multiloop structure 
The other prototype used in filter design is the multiloop circuit structure applying only one ideal operational 

amplifier which is presented in Fig. 2.13. 

Fig. 2.13 Multiloop circuit structure as the prototype for biquadratic filters 
Its transfer function obtained in chapter 1 is of the form 

 (2.48) 
By using different types of elements we can adopt this structure to realize three types of biquadratic filters. 
Low-pass filter 
It can be realized in the multiloop structure by adjusting the following types of elements 

In such case the transfer function is of the form 

 (2.49) 
High-pass filter 
To get high-pass biquadratic filter we have to adjust the elements as follows 

The transfer function in such case is of the form 

 (2.50) 
Band-pass filter 
Band-pass filter can be realized in multiloop filter structure by assuming 

In such case the transfer function is given by 
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 (2.51) 
The design of particular biquadratic filter on the basis of the assumed specifications is transformed to 

solution of the set of equations comparing the needed form of denominator (eq. (2.44)-(2.46)) and the actual one 
(one of eq. (2.49)- (2.51)). 

Example 2.7 
Design biquadratic filter of the given below multiloop structure presented in Fig. 2.13 realizing BP 

characteristics of the required values of quality Q=2 and center frequency fo=1000Hz. For the designed filter: 

1. 

Draw frequency (magnitude and phase) characteristics using Matlab. 

2. 

Estimate parameters (Q and fo) on the basis of the magnitude and phase characteristics. 

3. 

Apply cascade connection of two and more identical biquadratic circuit structures and draw its 
frequency characteristics. 

Solution 
The band-pass filter should apply the following elements: 

The design starts from normalized filter of ω0=1. Transfer function is defined in the form given below, in 

which the gain k is of no importance in our consideration 

Comparing the coefficients of this denominator and its general form given by (2.51) leads to the system of 2 
equations 

G5/C4+G5/C3=0.5 

G5(G1+G2)/(C3C4)=1 

They represent 2 equations in 5 variables, therefore, we may expect many different solutions. One of them, 
assumed by us is of the form 

G1=8S, G2=8S, C3=4F, C4=4F, G5=1S 

They are in the normalized form. To find proper real values of elements we have assumed kr=104 and 

kf=2π103. Applying it we get the real values of the elements applied in practical implementation of filter: 
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The program, shown below, applies these values of elements in simulation of the filter in Matlab. 

% Program in Matlab for BP filter 
% Real parameters of filter 
kr=10000, kf=2*pi*1000; 
g1=1/1250; g2=g1; g5=1/10000; c3=4/(kr*kf); c4=c3; 
% Frequency characteristics 
omega=0:5:20000; 
lo=length(omega) 
for k=1:lo 
h(k)=g1/c4*j*omega(k)/(-omega(k)^2 +j*omega(k)*(g5/c4+g5/c3)+g5*(g1+g2)/c3/c4); 
end 
figure(1) 
subplot(2,1,1), plot(omega, abs(h)/max(abs(h))), grid, ylabel('magnitude') 
subplot(2,1,2), plot(omega, angle(h)), grid, ylabel('phase') 
% Cascade connection of 2 identical sections 
h2=h.^2; 
figure(2) 
subplot(2,1,1), plot(omega, abs(h2)/max(abs(h2))), grid, ylabel('magnitude') 
subplot(2,1,2), plot(omega, angle(h2)), grid, ylabel('phase') 
% Cascade connection of 4 identical sections 
h4=h.^4; 
figure(3) 
subplot(2,1,1), plot(omega, abs(h4)/max(abs(h4))), grid, ylabel('magnitude') 
subplot(2,1,2), plot(omega, angle(h4)), grid, ylabel('phase') 

The graphical result presenting frequency characteristics of the designed biquadratic filter is presented in Fig. 
2.15. 
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Fig. 2.15 Frequency characteristics of the designed band-pass biquadratic filter. 
2.8 Exercises 

1. Transform low-pass (LP) filter of H(s)=1/(s2+s+1) into 

1. LP of 

2. HP of 

3. BP of  and 

4. BS of  and 

Solution: 

1. LP→LP 

1. LP→HP 

1. LP→BP 
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, B=1000, $latexs \to \frac{{{s^2} + \omega _{0r}^2}}{{B \cdot s}}$ 

1. LP→BS 

, B=1000, $latexs \to \frac{{B \cdot s}}{{{s^2} + \omega _{0r}^2}}$ 

1. 

Design KHN band-pass filter of parameters: 

Q=5, fo=1000Hz, ABP=1 

Solution: 
The KHN circuit is presented in Fig. 2.16 

Fig. 2.16 KHN circuit structure 
Assume C1=C2=C=100nF, R1=R2=R3=5kΩ and Rf1=Rf2=Rf 

Hence 
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1. Generate transfer function of Butterworth, Chebyshev and elliptic filters of 4th order. Assume 

normalized frequency , Rp=3dB and Rs=40dB. Plot frequency characteristics of all filters in 

common subplots. Apply Matlab. 

Solution: 
Matlab program generating transfer functions: 

[Lb,Mb]=butter(4,1,'s') 
[Lc,Mc]=cheby1(4,3,1,'s') 
[Le,Me]=ellip(4,3,40,1,'s') 

The results of this program: 

Lb = 0 0 0 0 1.0000 
Mb = 1.0000 2.6131 3.4142 2.6131 1.0000 

Lc = 0 0 0 0 0.1253 
Mc = 1.0000 0.5816 1.1691 0.4048 0.1770 

Le = 0.0100 -0.0000 0.1101 -0.0000 0.1815 
Me = 1.0000 0.5736 1.2654 0.4589 0.2564 

Hence the transfer functions of these filters are as follows 

1. Butterworth filter: 

1. Chebyshev filter: 

1. Elliptic filter: 

Matlab program plotting frequency characteristics: 

w=0:0.01:pi; 

74  Selected problems of circuit theory



hb=freqs(Lb,Mb,w); 
hc=freqs(Lc,Mc,w); 
he=freqs(Le,Me,w); 
subplot(2,1,1), plot(w, abs(hb),'r-', w, abs(hc),'g-', ... 
w, abs(he),'b-') 
grid, xlabel('Omega'), ylabel('Magnitude') 
legend('Butterworth','Chebyshev','Elliptic') 
subplot(2,1,2) 
plot(w, unwrap(angle(hb)),'r-', w, unwrap(angle(hc)), ... 
'g-',w, unwrap(angle(he)),'b-') 
grid, xlabel('Omega'), ylabel('Phase') 

The resulting plot is shown in figure below. 

Fig. 2.17 The magnitude and phase characteristics of Butterworth, Chebyshev and elliptic filters of 4th order. 

1. 

Compare orders of Butterworth, Chebyshev and elliptic filters needed to design filters of the following 
specifications: 

ωp=0.3, ωs=0.35, Rp=3dB and Rs=40dB 

Apply Matlab functions: buttord, cheb1ord, ellipord. 
Solution: 
Order of Butterworth filter: N=25 
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Order of Chebyshev filter: N=9 
Order of elliptic filter: N=5 
2.9 Basic definitions 
Attenuation of filter – the inverse value of the gain of the magnitude characteristic. In logarithmic scale 

the attenuation is the negative values of the logarithmic gain. 
Band-pass filter – filter that passes frequencies within a certain range and attenuates frequencies outside 

that range. 
Band-stop filter – filter that attenuates frequencies within a certain range and passes frequencies outside 

that range. 
Bandwidth – a measure of the width of a range of frequencies, measured in hertz. 
Biquad – a second-order linear filter, containing two poles and in general two zeros, called also biquadratic 

filter. 
Bode plot – the combination of the magnitude plot, expressing the magnitude (usually in decibels) of the 

frequency response, and a phase plot, expressing the phase shift. 
Butterworth filter – type of filter designed to have a frequency response as flat as possible in the passband 

(usually referred to as a maximally flat magnitude filter). 
Cascade of filters – the series of biquadratic filters connected in cascade fashion to reduce the sensitivity 

to parameter changes. 
Chebyshev filter – filter having passband equiripple (type I) or stopband equiripple (type II) behavior. The 

magnitude of ripples is controlled by the ripple factor ε. 
Chebyshev polynomial – a sequence of orthogonal polynomials which can be defined recursively. There 

are Chebyshev polynomials of degree n which represent the first kind denoted Tn and of the second kind which 

are denoted Un. 

Cutoff frequency – a boundary in a system’s frequency response separating the pass band from stop band 
ranges of frequency. 

Elliptic filter – filter with equiripple behavior in both the passband and the stopband. The magnitude of 
ripple is controlled by the ripple factor ε. It is also called Cauer filter. 

Filter – device that removes some unwanted components or features from a signal. Here we understand it 
as the device passing or stopping signals of certain ranges of frequency. 

Frequency characteristics – the change of transfer function H(s=jω ) with complex frequency s=jω. We 
recognize magnitude characteristics showing change of absolute values of characteristic with frequency and 
phase characteristic presenting change of angle with frequency. 

Frequency scaling – the procedure of changing the cutoff frequency of filter from the normalized value 
(usually equal one) to the required, practical value. 

High-pass filter – filter, that passes signals with a frequency higher than a certain cutoff frequency and 
attenuates signals with frequencies lower than the cutoff frequency. 

KHN – biquadratic filter structure built on the basis of three operational amplifiers allowing independent 
fitting the quality and cutoff frequency of filter (named after their authors: Kervin-Huelsman-Newcomb). 

Low-pass filter – filter that passes signals with a frequency lower than a selected cutoff frequency and 
attenuates signals with frequencies higher than the cutoff frequency. 

Multiloop filter – the biqudratic filter built on the basis of one operational amplifier employing 2 feedback 
paths. 

Normalized LP filter – the low-pass filter of the cutoff frequency equal one. 
Passband – the range of frequencies in which the gain of the filter is higher than the assumed threshold 

(attenuation is lower than the assumed threshold). 
Pole – the complex frequency s for which the transfer function H(s)=N(s)/D(s) assumes infinite value. 

Usually they are the roots of D(s). 

76  Selected problems of circuit theory

https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Attenuate
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Attenuate
https://en.wikipedia.org/wiki/Linear_filter
https://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot
https://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot
https://en.wikipedia.org/wiki/Decibel
https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Frequency_response
https://en.wikipedia.org/wiki/Passband
https://en.wikipedia.org/wiki/Passband
https://en.wikipedia.org/wiki/Ripple_(filters)
https://en.wikipedia.org/wiki/Stopband
https://en.wikipedia.org/wiki/Polynomial_sequence
https://en.wikipedia.org/wiki/Orthogonal_polynomials
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Frequency_response
https://en.wikipedia.org/w/index.php?title=Equiripple&action=edit&redlink=1
https://en.wikipedia.org/wiki/Passband
https://en.wikipedia.org/wiki/Stopband
https://en.wikipedia.org/wiki/Signal_(electronics)
https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Cutoff_frequency
https://en.wikipedia.org/wiki/Attenuate
https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Cutoff_frequency
https://en.wikipedia.org/wiki/Attenuate


Resistance scaling – the procedure of changing the resistance values of filter from the normalized value to 
the required, practical value (for example on the level of kΩ). 

Ripple factor – a frequency domain ripple that arises in filter magnitude characteristic. It means periodic 
variation in the insertion loss of the filter against increasing frequency. It is interpreted as maximum allowed 
attenuation ε in passband. For example ε=1 corresponds to the attenuation equal 3dB for the angular frequency 
ω=ω0). 

Stopband – the range of frequencies in which the gain of the filter is lower than the assumed threshold 
(attenuation is higher than the assumed threshold). 

Transit band – the range of frequencies, which belongs neither to passband nor to stopband. 
Zero –complex frequency s for which the transfer function H(s)=N(s)/D(s) assumes zero value. Usually zeros 

are the roots of N(s). 
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4.   Sensitivity of electrical circuits 

Sensitivity analysis plays an important role in electrical engineering. It defines the measure how the response 
of the circuit is sensitive to the changes of values of elements. Observe, that all circuit components are 
manufactured around a target value of their main parameter (the rated value) with an allowable tolerance. 
Smaller tolerance requires higher technological accuracy, which involves the increasing of the component costs 
and vice versa. Therefore, the designer must decide which components are critical and what is the required 
value of the tolerance. Such a decision is possible only through a rigorous sensitivity analysis [4]. In this 
chapter we will study only small increments of the parameter values, hence, the considerations will be limited 
only to the first derivative of the output function. 

4.1. Basic notions of sensitivity 

Let us assume the variable x represent any parameter of the circuit, for example resistance, conductance, 
impedance, capacitance or inductance. Let F(x) denotes the arbitrary response of the circuit, for example current 
or voltage. Different definitions of sensitivity might be applied [4,16]. 

Absolute (unnormalized) sensitivity 

(4.1) 
Relative sensitivity 

 (4.2) 
Semi-relative sensitivity 

(4.3) 
$latex P_{x}^{F}=\frac{{\partial F}}{{\partial x}}\frac{1}{F}$(4.4) 
The relative sensitivity represents the normalized value of the sensitivity. We may interpret it as the ration 

of the fractional change of the network function F to the fractional change in the parameter x, provided 
that all changes are sufficiently small (approaching zero theoretically). It is more convenient, because allows 
comparing the sensitivities with respect to many circuit parameters. If we know the sensitivity value at any 
operating point we are able to estimate the increment ΔF of the circuit as a result of small perturbation Δx of 
the parameter x . Especially important is the relative sensitivity. Using it we can calculate the expected change 
of the response F, namely 

(4.5) 
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The relative change of the response is proportional to the relative change of parameter x multiplied by the 
relative sensitivity value. The higher this sensitivity the larger change of the response. 

For example  means that changing x by α results in the relative change of response equal 1/2α. 
Many different properties of sensitivity function can be observed. Some of them are presented in Table 4.1 [16]. 

Table 4.1. Basic properties of relative sensitivity. 

Function F(x) Relative sensitivity 

These properties can simplify the sensitivity computation of the complex function F(x). This will be illustrated 
in the following example. 

Example 4.1 
Let us consider function F(x) given explicitly in the form 

Introducing notation  and  we can present 

sensitivity  as following 

in which  and . After making proper calculations 
we get finally 

4.2. Invariance relations 

The sensitivity relations of the response to different parameters are dependent to each other and are in strict 
relations. For example the impedance and admittance functions are in inverse relation Z=1/Y, hence, we have 
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(4.6) 
Similarly, according to the properties of sensitivity expressed in Table 4.1 we observe 

(4.7) 
Similarly, sensitivity of any function F with respect to the impedance of the inductor ZL=sL and to inductance 

L is the same. The same property is valid for the admittance YC=sC and capacitance of the capacitor. Therefore, 

we have 

(4.8) 

(4.9) 
Moreover, we can observe some interesting invariance relations of sensitivity to the admittances or 

impedances of the elements, irrespective of their type. Observe that the electrical elements may be described 
either by impedance or admittance relations. For the resistor we have ZR=R or YR=1/R, for inductor ZL=sL or 

YL=1/sL, for capacitor YC=sC or ZC=1/sC, for voltage controlled current source Is=gUs (g – parameter of the 

admittance type), for current controlled voltage source Us=rIs (r – parameter of the impedance type). For these 

type of elements the following invariance relations are valid 
The sum of relative sensitivities of the voltage transfer function Tv(s) with respect to all admittance or all 

impedance type parameters is zero. This can be written in the form 

(4.10) 
The sum of relative sensitivities of the arbitrary impedance function Z(s) of the circuit (for example the input 

impedance) with respect to all impedance type parameters is equal 1 and with respect to all admittance type 
parameters equal -1. This can be written in the form 

(4.11) 
In a similar way we can define the property regarding any admittance function. The sum of relative 

sensitivities of any admittance function Y(s) of the circuit with respect to all impedance type parameters is 
equal -1 and with respect to all admittance type parameters equal 1. 

(4.12) 
The sum of relative sensitivities of the arbitrary response function F(s) of the circuit (for example the 

impedance F(s)=Z(s), admittance F(s)=Y(s) or any other transfer function F(s)=T(s)) with respect to all 
inductances and all capacitances is equal to the sensitivity to the complex frequency s, which can be written in 
the way 

(4.13) 
Example 4.2 
The invariance properties of the circuit will be illustrated now on the example of the circuit shown in 

Fig. 4.1 
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Fig. 4.1. The circuit subject to sensitivity analysis. 

 
 

The circuit is described by the Kirchhoff voltage equation, from which we obtain the explicit form for the 
input impedance Zwe 

Applying the differentiation formulas for this explicit expression of Zwe we can immediately write the 

sensitivity relations 

It is easy to find that the sensitivity invariance to all impedance type parameters is fulfilled, since 

In a similar way we can check the sensitivity properties regarding voltage transfer function Tv=Us/Uwe. 

This voltage transfer function is equal 

The sensitivity relations of this function with respect to parameters of the circuit are given as follows 

It is easy to check, that . 
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The interesting sensitivity invariance properties can be defined also for RC circuits, containing no 
inductors. 

The relative sensitivity of voltage transfer function Tv(s) of the RC circuit with respect to all resistances and 

capacitances satisfies relations 

(4.14) 
The sum of relative sensitivities of the impedance function Z(s) or admittance function Y(s) with respect to 

all capacitances is equal to the sensitivity to the complex frequency s 

(4.15) 
Example 4.3 
Let us consider the RC circuit presented in Fig. 4.2. 

Fig. 4.2. The RC circuit subject to sensitivity analysis. 

 
 

It is easy to show, that voltage transfer function Tv(s)=Uwy/Uwe can be described by the following 

relation 

After simple differentiation of this function we get the following relative sensitivity functions 

The invariance expressed by eq. (4.14) is given now in the form 
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In the same way we can define the sensitivity regarding input impedance Zwe(s)=Uwe/Iwe of the circuit 

After differentiation of this expression we get 

It is easy to check the validity of the invariance relation (4.15) since . 

4.3. Adjoint network approach to sensitivity 

Direct differentiation of the function is applicable only in the case when this function is given in an explicit 
form. However, in electrical circuits is a rare situation, since such relations are very difficult to obtain for 
large size networks. Instead different approaches, which do not require the explicit form of solution, have been 
developed. In this chapter we will present two such approaches. One is based on the idea of adjoint network 
and the second on incremental network. This section will be devoted to adjoint network method [4,7,16]. 

4.3.1. Tellegen theorem 

Consider two circuits  and  of identical topologies. Let us define vectors of corresponding branch 
currents in both circuits of the same directions. Apply the same for voltages. According to Tellegen theorem 
the following identities are valid [4,16] 

(4.16) 

The vectors U, I are applicable in circuit N, and  in circuit . The superscript T means conjugate 
transposition of the complex vectors. Equation (4.16) does not have the physical meaning of “sum of branch 
powers”, since vectors V and I in general belong to two different networks. 

Tellegen equation is valid for instantaneous values, transformed variables and complex representation of 
variables. The only significant condition required by the theorem is the identical topology of both circuit 
structures and not the type of elements (the corresponding branches in both circuits may be absolutely 

different, for example resistor in N and diode in . Observe that by adding some additional branches as short 
circuit or open circuit in the in adjoint network we can create the same topology, always satisfying the Tellegen 
condition. 

4.3.2 Adjoint network 

Two linear time-invariant circuits N and  are said to be adjoint of each other if they satisfy the following 
conditions 

Both circuits have the same topology, which means that their incidence matrices are the same 
The hybrid matrices of both circuits satisfy the condition 
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(4.17) 
where the hybrid description is defined as follows 

(4.18) 
Applying these relations we can define the adjoint version of any circuit elements. In this way the whole 

network, adjoint to the original one, can be built. 
For example the 2-terminal element described by the impedance Z of the description U=ZI after applying eq. 

(4.17) is transformed to its adjoint version, which is described by the same type of equation . It mean 
that any passive 2-terminal element (resistor Z=R, inductor Z=sL, capacitor Z=1/sC) has the identical form as 
the original one. The first two rows of table 4.2 depict this situation. 

Table 4.2 The set of original adjoint elements 
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Element 
description Original element Adjoint element 

Resistor 

Impedance 

VCVS 

VCCS 

CCVS 
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CCCS 

In the case of controlled sources the description is in the form of 2-dimensional hybrid matrix. As an example 
let us consider voltage controlled voltage source (VCVS). Its nominal description is as follows 

Taking into account the condition (4.17) we get the following description of the adjoint element 

It is evident that adjoint element of VCVS is the current source  controlled by current , of the 

controlling coefficient equal –a, that is  with the proper exchange of the places of controlled and 
controlling currents. Table 4.2 depicts alll types of controlled sources and their corresponding adjoint elements. 

Observe, that passive elements R, L, C have adjoint counterparts of the same form as their originals. 
Therefore, the adjoint circuit to the passive RLC original one is exactly the same, with the only changes 
of notations of currents and voltages. It is in contrast to the circuits with controlled sources. Creation of 
adjoint circuit for controlled sources needs building the individual representation of each controlled source. 
The important point, that should be noted, is the directions of currents in both circuits should be opposite to 
the direction of voltages. 

The rules of creating the adjoint networks are not applicable to the independent sources appearing in original 
circuit. They should be simply eliminated in the adjoint circuit (original voltage source terminal short circuit 
and current source terminal open). 

Example 4.4 
Let us consider the original circuit with controlled sources presented in Fig. 4.3a. 

Fig. 4.5. Illustration of the terminals of circuits in computation of sensitivity of 

current I2: a) original circuit supplied from voltage (continuous) or current source 

(dashed line), b) the corresponding adjoint circuit supplied from the voltage 

source of unity value. 
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a)
b) 
Fig. 4.3 An example of circuit with controlled sources: a) original circuit, b) adjoint circuit. 
Following the rules of substituting the original elements by their adjoint counterparts allows building the 

structure of the adjoint circuit shown in Fig. 4.3b. The independent current source has been eliminated in 
adjoint circuit. 

4.3.3. Tellegen theorem for incremental circuit 
Let us consider multiport (original and adjoint) containing p external ports (the terminals representing either 

inputs or outputs) and internal elements (either passive RLC elements or controlled sources). In both parts of 
circuit the direction of current is opposite to direction of voltage (for passive and active elements in the same 
way). The vectors of voltages and currents will be distinguished by the indices: p for ports and b for other 
internal elements. 

In such case the Tellegen theorem  may be written in the extended form, where the 
sign ^ represents the adjoint network 

(4.19) 
Let us group the variables representing ports (index p) and internal branches (index b) on two sides of the 

equation. In such case we get 

 (4.20) 
Substituting the original variables Up, Ip, Ub, Ib by their appropriate increments does not change anything in 

Tellegen description. Therefore we get the following form of Tellegen theorem for incremental structure [4,16] 

(4.21) 
This equation will be the basis for getting the sensitivity relations of the port variables denoted by index p

(either voltages or currents) with respect to the parameters of the internal elements denoted by index b (the 
passive RLC elements and coefficients of the controlled sources). 

4.3.4. Sensitivity relations 
The equation (4.21) defines changes of the output variable, either currents ΔIp or voltages ΔUp on the output 

ports to the changes of parameters of the internal elements represented by ΔUb for voltages or ΔIb of currents 

of elements. Usually, we need to calculate sensitivity of one response (one element of vector Up or Ip) to the 

changes of one or more elements of circuits. These elements are strictly associated with the vectors Ub or Ib. 

The procedure should be organized in such a way that the left side of equations (4.21) should contain only 
this variable which is of interest in sensitivity analysis (either particular port voltage U2 or port current I2). Let 

us assume that the circuit is supplied from only one source (voltage U1 or current I1). In this way the circuit 

may be presented as the 2-port of the terminal variables U1, I1 on the input side and U2, I2 on the output side. 

Therefore, the left side of eq. (4.21) may be represented as follows 
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(4.22) 
By proper choice of terminal conditions we should reduce the left side to ΔU2 (when the sensitivity of voltage 

is required) or ΔI2 (for sensitivity of current). 

Let us first consider sensitivity of the output voltage U2. Additionally assume the supply in the form of either 

voltage source U1 or current source I1, as is shown in symbolic way in Fig. 4.4a. 

a)

b)

Fig. 4.4. Illustration of the terminals of circuits in computation of sensitivity of voltage U2: a) original 
circuit supplied from voltage (continuous) or current source (dashed line), b) the corresponding adjoint 
circuit supplied from the current source of unity value. 

In the case of voltage source (U1 of constant value) and lack of loading we have ΔU1=0, I2=0 and ΔI2=0. To get 

the increment of only ΔU2 in eq. (4.22) we should short circuit input terminals of adjoint circuit ( ) and 

assume current source as its source  of the direction opposite to the original voltage U2, as is shown 

in Fig. 4.4b. 
In the case of current source (I1 constant) supplying the original circuit of Fig. 4.4a we have ΔI1=0, I2=0 

and ΔI2=0. To get only increment ΔU2 in eq. (4.22) we should open the terminals of former current source I1 

assuming  and assume the current excitation  (identically as in the previous case). Such 
situation is illustrated in Fig. 4.4b. 
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In a similar way we can propose the proper port terminations for adjoint circuit in the case of sensitivity of 
the output current I2. The original circuit in such case is presented in Fig. 4.5a. 

a) 

b) 

Fig. 4.5. Illustration of the terminals of circuits in computation of sensitivity of current I2: a) original 
circuit supplied from voltage (continuous) or current source (dashed line), b) the corresponding adjoint 
circuit supplied from the voltage source of unity value. 

In the case of voltage supply in original circuit (U1=const) in Fig. 4.5a we have ΔU1=0, and ΔU2=0 (the output 

port short circuit). To obtain the increment ΔI2 in eq. (4.22) we have to short circuit former input port (

) and assume voltage excitation  of the direction opposite to the current I2 in original circuit, as shown 

in Fig. 4.5b. 
In the case of current excitation (I1=const) of Fig. 4.5a we have ΔI1=0 and also ΔU2=0. To obtain ΔI2 in eq. 

(4.22) we should open input terminals of adjoint circuit ( ) and assume unit voltage excitation 
(the same in the previous case). The final form of adjoint circuit is illustrated in Fig. 4.5b. 

Observe that in any case the original sources disappear in its adjoint counterpart (current sources open and 
voltage sources short circuit). Instead, in adjoint circuit we apply only the unity sources (voltage source in 
calculation of sensitivity of output current and current source for sensitivity of output voltage). Finally we get 
the required increase of response, either ΔU2 or ΔI2. 

Let us consider now the right side of incremental Tellegen equation (4.21). It should be expressed as a 
function of the increments of parameters of the elements, with respect to which the sensitivity functions are 
calculated. In such case the increment of response (ΔF) will be expressed as a linear function of the increment 

of the parameter (Δx). As a result we get the absolute sensitivity formula . 
Each element of the circuit needs special treatment. Let us start from the impedance Z, for which U=ZI in 

original circuit and also in adjoint one. Therefore, the right side of eq. (4.21) takes the form 
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(4.23) 

If we take into account that  and  the right side of eq. (4.23) is simplified to 

(4.24) 
From general equations (4.21) we get the sensitivity formula for impedance Z 

(4.25) 
This equation shows, that the derivative of the response F does not need to know the explicit form of it. It is 

enough to calculate the current of the impedance Z in the original (I) and adjoint circuit ( ) and multiply them. 
In a similar way we can obtain the sensitivity formulas for any circuit element, including controlled sources. 

As an example let us take the voltage controlled voltage source (VCVS), for which we have U2=aU1. Note, 

that for this type of source we have also I1=0, ΔU1=0 (the controlling variable is assumed constant). From the 

mathematic rules we have . Additionally for the adjoint element we have 

. The right side of eq. (4.21) takes now the form 

(4.26) 
Hence the sensitivity formula for VCVS can be expressed now as follows 

(4.27) 

It is evident that sensitivity function is the product of two controlling variables: U1 in original circuit and 

in adjoint one. Table 4.2 depicts the sensitivity formulas (the third column) for the passive elements (the values 
R, G, Z, Y) and four types of controlled sources (the controlling coefficients). 

Table 4.3 Sensitivity relations in adjoint network approach 
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Original element Adjoint element Sensitivity relation 
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Observe, that obtaining the sensitivity values to many circuit elements needs to perform only two analyses: 
one of original circuit and the second of the adjoint circuit. On the basis of the results of such analyses the 
sensitivity values of the considered response with respect to all elements are determined. 

Example 4.5 
As an example let us determine the sensitivity of the input impedance Zwe of the circuit of Fig. 4.6a with 

respect to all resistances. Assume the values of resistances as follows: R1=20Ω, R2=10Ω, R3=5Ω, R4=5Ω. 

a) 

b) 

Fig. 4.6 The exemplary circuit in sensitivity analysis: (a original, b) adjoint 

The input impedance of the circuit is defined as Zwe=U1/I1 . To apply the adjoint approach to sensitivity 

computation we assume current excitation of unity value I1=1. Therefore, Zwe=U1 and we should apply 

procedure for sensitivity of voltage U1. The analysis of only two circuits is needed. For the original circuit we 

have the following Kirchhoff’s equations and their solutions 
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The adjoint circuit should be supplied by the current source . The structure of adjoint circuit is 
identical to the original circuit, since there are no controlled sources (Fig. 4.6b). Applying Kirchhoff’s equations 
we get the solution as follows 

On the basis of both solutions we calculate the sensitivity of input impedance as follows 

It is easy to show that the basic invariance property holds, . This can be confirmed also by 
direct differentiation of the expression for input impedance Zwe, which is defined as follows 

After proper differentiation we get 

These results are the same as those obtained by adjoint network approach. It is worth to observe that exact 
result of differentiation of the network function was possible without knowing the explicit form of the function 
under differentiation. Moreover, all operations are done in numerical form, therefore, the method can be easily 
implemented in computer program. 

Example 4.6 
The next example will present the adjoint method for the circuit containing controlled sources (Fig. 4.7). 

The sensitivity of output voltage Uwy and input impedance with respect to all conductances Gi (i = 1, 2,…, 
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7) and controlling coefficients gi (i = 1, 2, 3) of controlled sources will be calculated by using adjoint method 

implemented in the form of complete Matlab program. 
 
a) 

b) 

Fig. 4.7. Structures of the a) original and b) adjoint networks in sensitivity analysis. 

The original circuit is excited by the unity current source. It means that input impedance is equal to the input 
voltage and output voltage equivalent to transfer function voltage-to-current. 

Fig. 4.7b represents the adjoint circuit. The dashed lines indicate the possible excitation of this circuit. In 

calculation of sensitivity of output voltage we apply only the unity current source  connected parallel 
to the conductance G7. 

In the case of sensitivity of input impedance (input voltage) the excitation is applied at the input of circuit in 
the form of unity current source (identically as in original circuit). The Matlab file implementing all sensitivity 
computations is given below. 

% Sensitivity of ladder network 
% Elements 
format compact 
G1=1; G2=2; G3=1; G4=2; G5=1; G6=2; G7=1; 
g1=1; g2=3; g3=1;Iwe=1; 
% Analysis of original circuit – nodal method 
Y=[G1+G2 -G2 0 0 
-G2+g1 G2+G3+G4 -G4 0 
0 -G4+g2 G4+G5+G6 -G6 
0 0 -G6+g3 G6+G7]; 
Iz=[Iwe; 0; 0; 0]; 
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V=Y\Iz; 
Uwy=V(4); 
UG1=V(1); UG2=V(1)-V(2); UG3=V(2); UG4=V(2)-V(3); UG5=V(3); UG6=V(3)-V(4); UG7=V(4); 
% Analysis of adjoint circuit 
Yd=Y'; 
Izd=[0; 0; 0; 1]; 
Vd=Yd\Izd; 
UGd1=Vd(1); UGd2=Vd(1)-Vd(2); UGd3=Vd(2); UGd4=Vd(2)-Vd(3); 
UGd5=Vd(3); UGd6=Vd(3)-Vd(4); UGd7=Vd(4); 
% Absolute sensitivity of the output voltage 
BG1=-UG1*UGd1; BG2=-UG2*UGd2; BG3=-UG3*UGd3; BG4=-UG4*UGd4; BG5=-UG5*UGd5; 
BG6=-UG6*UGd6; BG7=-UG7*UGd7; Bg1=-V(1)*Vd(2); Bg2=-V(2)*Vd(3); Bg3=-V(3)*Vd(4); 
% Relative sensitivity 
SUG1=BG1*G1/Uwy; SUG2=BG2*G2/Uwy; SUG3=BG3*G3/Uwy; SUG4=BG4*G4/Uwy; SUG5=BG5*G5/Uwy; 
SUG6=BG6*G6/Uwy; SUG7=BG7*G7/Uwy; SUg1=Bg1*g1/Uwy; SUg2=Bg2*g2/Uwy; SUg3=Bg3*g3/Uwy; 

% Analysis of adjoint circuit for input impedance 
Izd=[1; 0; 0; 0]; 
Vd=Yd\Izd; 
UGd1=Vd(1); UGd2=Vd(1)-Vd(2); UGd3=Vd(2); UGd4=Vd(2)-Vd(3); 
UGd5=Vd(3); UGd6=Vd(3)-Vd(4); UGd7=Vd(4); 
Zwe=V(1)/Iwe; 
% Absolute sensitivity 
BG1=-UG1*UGd1; BG2=-UG2*UGd2; BG3=-UG3*UGd3; BG4=-UG4*UGd4; BG5=-UG5*UGd5; 
BG6=-UG6*UGd6; BG7=-UG7*UGd7; Bg1=-V(1)*Vd(2); Bg2=-V(2)*Vd(3); Bg3=-V(3)*Vd(4); 
% Relative sensitivity 
SZG1=BG1*G1/Zwe; SZG2=BG2*G2/Zwe; SZG3=BG3*G3/Zwe; SZG4=BG4*G4/Zwe; SZG5=BG5*G5/Zwe; 
SZG6=BG6*G6/Zwe; SZG7=BG7*G7/Zwe; SZg1=Bg1*g1/Zwe;SZg2=Bg2*g2/Zwe;SZg3=Bg3*g3/Zwe; 

As a result of these computations of sensitivity of output voltage with respect to all parameters arranged as 
follows: G1, G2, G3 G4, G5, G6, G7, g1, g2, g3 we got 

It is easy to check that the invariance property of voltage-to-current transfer function (impedance type 
function) is fulfilled, since 

SUG1+SUG2+SUG3+SUG4+SUG5+SUG6+SUG7+SUg1+SUg2+SUg3=-1 
In the case of input impedance the following sensitivity values have been obtained) 

Also here the invariance property of the sensitivity is fulfilled, since 
SZG1+SZG2+SZG3+SZG4+SZG5+SZG6+SZG7+SZg1+SZg2+SZg3=-1 
4.3.5. Interpretationof adjoint method by SFG 
It is well known, that both circuits: the original and the adjoint one can be represented by signal flow graphs. 
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Let us assume original circuit represented by graph G and its adjoint counterpart by . The graph  is created 
as the transposition of G, that is by inversing the directions of the branches of original SFG, while keeping 

the same values of the branch gains. Observe, that in such inversion the source node of G is converted in 

to the sink node, and output node Xwy of G to the source node in . The source signal in  should take the 

unity value. At such assumptions the sensitivity relations of the signal Xwy with respect to the gains wij of the 

branches of the graph take the form 

 (4.28) 
All signals in the original graph are denoted by (Xj) and in adjoint graph by 

$latex({{\hat{X}}_{i}})$ 

. The parameter wij represents the gain of the branch starting from jth node and ending in ith node of original 

graph G (and in opposite directions in ). 
Let us sum up the procedure of application of SFG in sensitivity analysis. 

For the given graph G of the source node signal Xwe and output node signal Xwy create the adjoint graph 

in the following way. 

All branches of  exist also in G and are of the same gains but opposite directions. 

The source node in  is now the former output node. The excitation signal applied in this node has the unity 
value. 

Analyze both graphs G and  and calculate all their signals. 
Calculate sensitivity of the output signal Xwy with respect to all gains wij as the product of signals from 

which the gain wij starts in original graph (Xj) and in adjoint graph  applying the eq. (4.21). 

Example 4.7 
The procedure of application of SFG in sensitivity calculations will be illustrated on the example of graph 

presented in Fig. 4.7a. The gains of the branches are denoted as : w1, w2, w3, w4, w5. 
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a) 

b) 

Fig. 4.8 The structure of: a) original graph G and b) adjoint graph  in sensitivity computation. 

Adjoint graph  is shown in Fig. 4.8b. All signals in this graph are denoted with a hat. At such notations we 
get the following sensitivity formulas 

Example 4.8 
The next example will present the application of SFG in calculation of sensitivity of the transfer function 

T=Xwy/Xwe, of the network represented by the original graph presented in Fig. 4.9a. Assume that all gains 

are known and equal: a1=1, a2=2, a3=3, a4=4. Assuming source signal Xwe=1 the task of sensitivity of transfer 

function is transformed to the sensitivity of output node signal Xwy with respect to the gains of the branches. 

The adjoint graph  to the original system is presented in Fig. 4.9b. 
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a) 

b) 

Fig. 4.9. Signal flow graph representing: a) original system, b) adjoint system. 

From the Mason rule we get the solution of graph G as follows 

The same Mason rule applied to graph  results in 

Hence the sensitivity values of transfer function T with respect to all gains are as follows 

The authenticity of the results can be checked by direct differentiation of the transfer function of the original 
graph obtained in an explicit way using Mason gain formula. This function is given by 

From the differentiation of this relations we get 
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As it is seen direct differentiation has confirmed the former results, following from the application of adjoint 
graph. 

4.4. Incremental method of sensitivity computation 

The incremental method of sensitivity computation requires also only two analysis. One should be done for 
original circuit and the second for the incremental one, supplied by the signal obtained from the original circuit 
analysis. The results of analysis of incremental circuit delivers immediately the proper sensitivity values. 

The incremental method is complementary to the adjoint one [4,16]. At two analyses, the adjoint method 
allows calculating the sensitivity of one chosen output variable of the circuit (for example arbitrary voltage or 
current) to all internal parameters of the circuit. Contrary to this, the incremental method (applying also two 
analyses of the circuit) allows getting the sensitivity of all variables in the circuits (voltages and currents) to 
only one chosen internal parameter. Both methods operate with numerical values of elements and do not need 
the explicit form of solution of the circuit. 

The fundamental point in this method is the relation describing change of output variable of the element at 
the change of input variable. Let us assume the passive element of the impedance Z. From the Ohm’s law we 
have 

(4.29) 
The increment of the voltage U at small change ΔZ of the value of parameter Z is given by 

(4.30) 
This equations represents the incremental model of element Z in which the current is represented by its 

increment ΔI and voltage by ΔU. It is composed of series connection of impedance Z and voltage source defined 
by IΔZ. The current I appearing in this equation is the value of current in the original circuit. The circuit model 
of it is depicted in the first row of table 4.4. 

In an identical way we can create the incremental models of all other electrical elements, including controlled 
sources. As an example consider the voltage controlled voltage source VCVS described by U2=aU1. The 

increment of the output voltage ΔU2 is described by 

(4.31) 
This equations corresponds to the series connection of the incremental voltage controlled voltage source 

 and the voltage source defined by , where U1 is the voltage value of the original circuit. The 

circuit model corresponding to this equation is depicted in the third row of table 4.4. The other rows in this table 
show the incremental models of other electrical elements forming the circuits. Observe, that each incremental 
model operates with a variable taken from the solution of the original circuit. 

Table 4.4 Incremental models of the basic circuit elements. 

Sensitivity of electrical circuits    99



Name of element Original element Incremental model of element 

Impedance 

Admittance 

VCVS 

VCCS 

CCVS 
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CCCS 

Independent voltage 
source 

Independent current 
source 

As it is seen from this presentation the incremental method requires 2 analyses of the circuit. 
The first analysis is of original circuit and is directed to find the solution of voltage or current of the element 

with respect to which the sensitivity will be calculated. 
The second analysis is done for incremental model of the circuit. This model is built with emphasis to the 

element with respect to which the sensitivity is calculated. The other elements are the same as in original 
circuit. The sources from the original circuit are eliminated in the incremental model (as shown in the last 
two rows of table 4.4. The excitation for this model is the independent source associated with the incremented 
element. 

The results of analysis of the incremental model deliver immediately the sensitivity of all variables in this 
circuit with respect to the particular incremented element, since all calculated variables represent increment 
of output signals ΔFi as a function of increments of the element value Δx. If we assume Δx=1, the variables in 

incremental model represent the absolute sensitivity of Fi with respect to x. 

Example 4.9 
The incremental method will be illustrated on the example of circuit shown in Fig. 4.10a. Assume following 

values of elements: E=40V, R1=10Ω, R2=5Ω, R3=10Ω. 
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a) 

b) 

Fig. 4.10 The circuit under consideration in example: a) the original circuit, b) the incremental model with respect to changes of R1 . 

From the analysis of original circuit we get: 

Let us calculate the sensitivity of all currents in the circuit with respect to the resistance R1. The proper 

incremental model shown in Fig. 4.10b is built. From the analysis of this circuit we get the following results: 

Hence, the sensitivity values of all currents with respect to R1 are equal: 
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Observe, that the value of ΔR1 did not matter in final calculations. Therefore, we can assume ΔR1=1 without 

any change of the final sensitivity values. 
To check the correctness of the results we can apply direct differentiation of the symbolic formulas 

describing I1, I2 and I3 with respect to R1. As a result we get 

It is evident that the corresponding results are the same. The important advantage of incremental method is 
that all calculations are done in numerical way and we don’t not need to have the symbolic solution for the 
variables of circuit. 

Example 4.10 
As the second example let us consider the more complicated circuit containing 2 controlled sources presented 

in Fig. 4.11a. The sensitivity will be calculated with respect to the coefficient r of the current controlled voltage 
source Us=rI4. The corresponding incremental model is shown in Fig. 4.11b. Observe that all variables in this 

circuit represent increments of the voltages and currents. 
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a) 

b) 

Fig. 4.11 The circuit under consideration in example: a) the original circuit, b) the incremental model with respect to 
changes of the controlling coefficient r. 

This time the analyses of both circuits are done using Matlab program, shown below. 

%Sensitivity analysis using incremental method 
%Elements 
G1=1; G2=4; G3=2; G4=2.5; G5=2; r=2; g=3; 
Iwe=1; 

%Analysis of original circuit – nodal method 
-G5 G5+G2+G3 -G3; 
0 -G3+g G3+G4-g]; 
Iz=[Iwe;0;0]; 
Vo=Y\Iz; 
Uwy=Vo(3); 

%Notations: UG1=UR1, UG2=UR2, UG3=UR3, UG4=UR4, UG5=UR5, Ur=Us, Ig=Is, 
UG1=Vo(1); UG5=Vo(1)-Vo(2)-r*G4*Vo(3); UG2=Vo(2); UG3=Vo(2)-Vo(3); 
UG4=Vo(3);Ior=Vo(3)*G4;Uog=UG3;Uor=r*G4*Vo(3); 

%Analysis of incremental circuit with respect to changes of r 
% 
dr=1; 
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Yp=Y; 
Izp=[Ior*dr*G5;-Ior*dr*G5;0]; 
Vp=Yp\Izp; 
Upwy=Vp(3); 
%Notations: UpG1=ΔUR1, UpG2=ΔUR2, UpG3=ΔUR3, UpG4=ΔUR4, UpG5=ΔUR5, Upr=ΔUs, Ipg=ΔIs, 
UpG1=Vp(1); UpG2=Vp(2); UpG3=Vp(2)-Vp(3); UpG5=Vp(1)-Vp(2)-r*G4*Vp(3)-dr*Ior; 
Upr=r*G4*Vp(3)+dr*G4*Vo(3); UpG4=Vp(3); Ipg=g*UpG3; 

% Absolute sensitivity 
BUG1= UpG1/dr; BUG2=UpG2/dr; BUG3=UpG3/dr; BUG4=UpG4/dr; BUG5=UpG5/dr; BIg=Ipg/dr; BUr=Upr/dr; 
disp('Absolute sensitivity'); 
BUG=[BUG1 BUG2 BUG3 BUG4 BUG5 BIg BUr] 

%relative sensitivity 
SUG1=BUG1*G1/UG1; SUG2=BUG2*G2/UG2; SUG3=BUG3*G3/UG3; SUG4=BUG4*G4/UG4; 
SUG5=BUG5*G5/UG5; SIg=BIg*g/Uog; SUr=BUr*r/Uor; 
disp('Relative sensitivity'); 
SU=[SUG1 SUG2 SUG3 SUG4 SUG5 SIg SUr] 

As a result of such analyses we get: 
The absolute sensitivity of all voltages and controlled current with respect to r 

The relative sensitivity values 

4.5. Example of sensitivity analysis in complex frequency 

Both sensitivity analyses presented above are applicable in both purely resistive and RLC circuit at sinusoidal 
excitation. In this point we will demonstrate the procedure on the example of integrating RC circuit built on 
the basis of operational amplifier of the amplification gain A as shown in Fig. 4.12. 

We will investigate the relative sensitivity of output voltage Uwy with respect to resistance R, admittance YC 

(capacitance C) of capacitor and gain A of operational by using adjoint network method. Fig. 4.13a presents the 
equivalent circuit of operational amplifier and Fig. 4.13b the corresponding adjoint network, where Uwy=-AU. 

a) 
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Fig. 4.12. RC integrator built on the basis of operational amplifier of finite 

gain. 

Fig. 4.13. The equivalent circuit of integrator: a) the original structure, b) 

the adjoint circuit. 

According to the table 4.3 the absolute sensitivity functions are described by 

(4.32) 

(4.33) 

(4.34) 

(4.35) 
Therefore both analyses should deliver the currents of resistor, voltages of capacitor and controlling variables 
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of the VCVS in original and adjoint network. On the basis of Kirchhoff’s laws the original circuit of Fig. 4.11a 
is described by the following equations 

In a similar way we describe the adjoint circuit 

Both equations have been coded in Matlab program. The numerical results of computations have been 
used to find absolute and relative sensitivity to the resistance, admittance of capacitor, capacitance and the 
gain of operational amplifier (this gain was assumed to be constant A=K and independent on frequency). The 
sensitivity functions depend on frequency in RC circuits. 

Additionally, the numerical results of application of adjoint method have been compared to the theoretical 
values obtained by direct differentiation of the output voltage described in an explicit way, where Uwy = 

Uwe*A/(1+YC*R(1+A)). The results of both approaches to sensitivity computation agree completely. 

% Sensitivity of RC integrator 
format compact 
omega=[10:5:2000]; 
L=length(omega); 
R=1000; C=1e-6; A=5; Uwe=1; 
K=A; 

% Analysis of original circuit 
% Wector x=[IR; UC; U]’ 
for i=1:L 
YC=j*omega(i)*C; 
A1=[R 1 -K 
1 -YC 0 
R 0 1]; 
b=[Uwe; 0; Uwe]; 
x=A1\b; 
Uwy=-K*x(3); 

% Analysis of adjoint circuit 
% xd=[IRd UCd Ist]’ 
Ad=[1 -YC -K 
R 1 0 
0 -YC 1]; 
bd=[0; 0 ; 1]; 
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xd=Ad\bd; 

% Absolute sensitivity 
BUR=x(1)*xd(1); 
BUYC=-x(2)*xd(2); 
BUC=BUYC*j*omega(i); 
BUK=x(3)*xd(3); 

% Realtive sensitivity 
SUR(i)=BUR*R/Uwy; 
SUC(i)=BUC*C/Uwy; 
SUYC(i)=BUYC*YC/Uwy; 
SUK(i)=BUK*K/Uwy; 

% Analytical differentiation 
% Uwy = Uwe*A/(1+YC*R(1+A)) 
BURa=Uwe*K*(YC+K*YC)/(1+YC*R+K*YC*R)^2; 
BUYCa=Uwe*K*(R+K*R)/(1+YC*R+K*YC*R)^2; 
BUCa=Uwe*BUYCa*j*omega(i); 
BUKa=-Uwe*(1+YC*R)/(1+YC*R+K*YC*R)^2; 
end 

% Graphical results 
plot(omega, abs(SUR),'-',omega, abs(SUYC),'--',omega, abs(SUK),'-.');grid 
xlabel('omega');ylabel('Relative sensitivity') 
legend('Resistor','Capacitor','Gain') 

Fig. 4.14 shows the absolute values of sensitivity of output signal with respect to the resistance R, capacitance 
C and the gain A as a function of frequency [16]. 

4.6 Project devoted to sensitivity analysis 

One of the project, student should do, is to prepare the Matlab program for calculating the sensitivity of the 
circuit (particular voltage or current of the branch indicated by the teacher) to all internal parameters of the 
circuit. This can be easily done using the adjoint method. An example of the circuit subject to sensitivity 
analysis of the output voltage is presented below. 

The circuit is described by the nodal equations. The values of elements can be assumed in an arbitrary way. The 
lines of Matlab program for sensitivity computation are shown below. 

% Sensitivity project 
r1=1; r2=2, r3=3, r4=4, r5=5,r6=6,alfa=2.5,ii=1 
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Fig. 4.14. Sensitivity characteristics of the circuit versus frequency. 

Fig. 4.15 The circuit structure subject to sensitivity analysis. 

g1=1/r1; g2=1/r2;g3=1/r3;g4=1/r4;g5=1/r5;g6=1/r6; 
%Original network 
y=[g1  -g1         0           0 
  -g1  g1+g2+g3   -g3-alfa*g4  0 
  0    -g3        g3+g4+g5    -g5 
  0      0        -g5         g5+g6] 

% Branch currents of original circuit 
is=[ii  0  0  0]' 
v=inv(y)*is 
ir1=ii; ir2=g2*v(2); ir3=g3*(v(2)-v(3)); 
ir4=g4*v(3);ir5=g5*(v(3)-v(4)); ir6=g6*v(4); 
vout=v(4); 
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%Adjoint network 
ya=y' 
isa=[0 0 0  1]' 
va=inv(ya)*isa 

% Currents and voltages in adjoint network 
iar1=0; iar2=g2*va(2); iar3=g3*(va(2)-va(3)); 
iar4=g4*(va(3)+alfa*va(2)); iar5=g5*(va(3)-va(4)); 
iar6=g6*va(4); var2=-va(2); 

%Absolute senitivity 
br1=ir1*iar1; 
br2=ir2*iar2; 
br3=ir3*iar3; 
br4=ir4*iar4; 
br5=ir5*iar5; 
br6=ir6*iar6; 
balfa=-ir4*var2; 

%Relative sensitivity 
sr1=br1*r1/vout; 
sr2=br2*r2/vout; 
sr3=br3*r3/vout; 
sr4=br4*r4/vout; 
sr5=br5*r5/vout; 
sr6=br6*r6/vout; 
salfa=balfa*alfa/vout; 
s=[sr1 sr2 sr3 sr4 sr5 sr6 salfa] 

Student should prepare the similar program for his own circuit structure, calculate the absolute and relative 
sensitivity values and check the validity of the appropriate invariance criteria. 

4.7 Exercises 

Calculate the relative sensitivity of the function F(x) with respect to variable x for x=1. 

Solution: 
Let us present F(x) in the form F(x)=F1(x)/F2(x), where F1(x) represents the numerator and F2(x) denominator. 

In such case we have 

110  Selected problems of circuit theory



Apply adjoint graph to calculate the relative sensitivity of xout with respect to all weights of the 

graph. Assume w1=1, w2=0.5, w3=1, w1=-2, w4=2, w5=-2, w6=3. 

a) 

b) 

Fig.4.16 Graph of original system (a) and of adjoint system (b) 
Solution: 
Applying Mason formula for original SFG we get 

On the basis of Mason formula applied for adjoint graph we get 

The sensitivity functions are then as follows 
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Build adjoint network for the circuit presented below 

Fig. 4.17a Original circuit structure 

Solution: 
The network structure adjoint to the original circuit is presented below. 

Fig. 4.17b Circuit structure adjoint to the original circuit 

Calculate sensitivity of all currents in the circuit of Fig. 4.18a with respect to the gain a=2 of the current 
controlled current source (CCCS). 

Solution: 
This time we apply the incremental method of sensitivity computation. The incremental circuit is presented 

in Fig. 4.3b. In the first phase we analyse the original circuit. From Kirhhoff’s law we get the following system 
of equations 
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Fig. 4.18a Original circuit structure subject to sensitivity analysis 

The solution of these equations delivers the results: 

The incremental circuit structure is presented in Fig. 4.3b. 

Fig. 4.18b The incremental circuit structure corresponding to the original circuit of 

Fig. 4.3a 

Kirchhoff’s set of equations for incremental circuit is as following 

Solving these equations we get 

Hence the sensitivity functions are as follows 
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4.8 Basic definitions 

Adjoint circuit – the circuit is adjoint to the original circuit, if it has the same topology, and hybrid 
descriptions of both circuit satisfy special conditions. 

Adjoint graph – the signal flow graph which has the same topology as the original one, but inverted 
direction of signal flow. 

Adjoint method – the method of determining the derivative of network variable (current or voltage) with 
respect to all element parameters. It produces exact result of derivative without knowing the explicit form of 
solution for the considered variable. It needs only two analyses: one of the original circuit and the other of 
adjoint one. 

Controlled sources – the current and voltage sources of the values dependent on the other branch voltages 
or current in the circuit. They form in general active devices. 

Hybrid description – matrix description of linear multiport network arranging the voltage and currents of 
the terminal in a very specified form. 

Incremental circuit – the circuit in which all elements have been replaced by their increments, including 
the variables (currents and voltages). 

Incremental method – the method of determining the derivative of all network variables (currents and 
voltages) with respect to one chosen element parameter. It produces exact result of derivative without knowing 
the explicit form of solution for the considered variables. Only two analyses are needed: one of the original 
circuit and the other of incremental one. 

Relative sensitivity – the normalized value of the sensitivity. It is interpreted as the ratio of the fractional 
change of the network function F to the fractional change in the parameter x, provided that all changes are 
sufficiently small. 

Sensitivity – the relationship indicating what is the ratio between the small change in electrical output 
signal F to a small change in physical input parameter x. It is defined in mathematical term as the derivative of 
the output signal with respect to the input parameter. 

Sensitivity invariants – the property of certain sensitivity functions which are preserved under some 
transformation of circuit parameters. 

Tellegen theorem – the most powerful theorem in network theory, stating that sum of products of currents 
and voltages over all elements in the circuit is zero. It is valid for any network that contains any elements, 
linear or nonlinear, passive or active, time-varying or time-invariant. Moreover, the currents and voltages may 
come from an entirely different networks, so long as these two networks have the same topology. 
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5.   Discrete time systems 

The circuits considered up to now belonged to the continuous time systems (called also analog systems), 
which are described in the continuous time or in the complex frequency domain s at application of Laplace 
transformation. Their general dynamic description in time domain is usually assumed in the state space form 
[6,7,16] 

 (5.1) 
in which A, B, C, D are the state matrices, x – state vector, u – excitation vector, y – output vector. Solution 

of this system of differential equations in time domain can be easily obtained using numerical methods, for 
example implemented in Simulink [17,21]. In the complex frequency domain the continuous time description 
is usually characterized by the transfer function matrix H(s), which is related to state space matrices as follows 

 (5.2) 
This transfer function for linear lumped parameter systems takes the form of rational function. For one input 

and one output system it can be expressed in the scalar form 

 (5.3) 
Discrete systems are contrasted with continuous systems, because they are represented in discrete time. In 

this type of system the information of signals is accessible only at discrete time points tk=kTs, where Ts is a 
sampling period and k the time index. Because discrete systems have a countable number of states, they may 
be described in precise mathematical models. This chapter will be devoted to different aspects of such discrete 
time systems. 

5.1. Description of discrete system in time domain 

The discrete systems may be created in different ways. The typical one is measuring the signals in discrete time 
points following from sampling clock ticks. The general description of discrete systems may be presented in 
the form of state space, analogously as it was done for continuous systems [16,18] 

 (5.4) 
This description uses discrete time notation n, in which the samples are described for discrete ime tn=nTs. In 

the case of one input and one output system of the signals u(n) for input and y(n) of output the discrete system 
is often presented in a simplified form of difference equation 
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(5.5) 
It should be noted, that discrete system described by general equation (5.4) is stable, when all eigenvalues of 

the matrix A are inside of the unit circle (the circle with a radius of one). 
It is possible to change from continuous to discrete time description by substituting the differentiation by 

finite differences of the variables. There are many such transformation formulas. The simplest one is direct 
application of definition of derivative, by assuming finite value of variable (usually time) with respect to which 
the derivative is calculated. Assuming finite increase of variables we can obtain two different formulas of 
approximation. Let us assume the variable x under differentiation at the time point tn=nTs , that is x(tn)=x(n) 
and the finite increase of time rt=Ts. In such case we define [6,16] 

• forward Euler formula (extrapolation) 

 (5.6) 

• backward Euler formula (interpolation) 

 (5.7) 
They represent one-step integration formulas. More advanced are multi-step Gear formulas, which 

approximate derivative by taking into account many time points from the past. Table 5.1 shows the second, 
third and fourth order Gear formulas as the approximation of the derivative of variable x in the time point 
tn=nTs 

Table 5.1. Gear approximation formulas of derivative. 

Order of 
approximation Gear formula 

2 

3 

4 

 
Application of approximation of derivative by finite differences changes the differential equation into 

difference one. Number of points from the past is dependent on the applied algorithm. The accuracy of 
approximation is dependent on the type of applied algorithm, order of approximation (in Gear method) and the 
length of sampling period. 

Observe, that substituting the differential equations by the difference one simplifies the process of solution 
of such systems, since the difficult process of integration is transformed to simple adding terms from the past. 
The latter operations can be easily coded into the form of computer program. 
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Example 5.1 

These aspects of approximation will be illustrated on the example of differential equation  by 
applying both Euler methods and Gear method of the second and third orders by assuming Ts=0,5. The 
numerical results for some chosen values of t are presented in Table 5.2. The second column shows the exact 
values and other columns the approximations of different types. 

 

Table 5.2. The approximation results of  at application of Euler and Gear methods. 

tn Forward Euler Backward Euler 2-nd order Gear 3-rd order Gear 

1.50 6.75 9.25 4.75 6.25 6.75 

2.00 12.00 15.25 9.25 11.50 12.00 

2.50 18.75 22.75 15.25 18.25 18.75 

3.00 27.00 31.75 22.75 26.50 27.00 

3.50 36.75 42.25 31.75 36.25 36.75 

4.00 48.00 54.25 42.25 47.50 48.00 

4.50 60.75 67.75 54.25 60.25 60.75 

5.00 75.00 82.75 67.75 74.50 75.00 

5.50 90.75 99.25 82.75 90.25 90.75 

6.00 108.00 117.25 99.25 107.50 108.00 

As it is seen, the most accurate results correspond to application of 3-rd order Gear method. Both Euler methods 
delivered results far from expected, the forward one overestimated and backward underestimated. Fig. 5.1 
presents the changes of estimation errors as a function of time. The Gear methods deliver not only the smallest 
errors, but also stable with time, which is not true for Euler methods. 

Example 5.2 
As an example consider the analog RLC circuit structure presented in Fig. 5.2. We will show how to transform 

it into the discrete system by applying Euler rules. 

Fig. 5.2. The RLC circuit structure in the 

example. 
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Fig. 5.1.Approximation errors versus time for different methods of approximation. 

From the Kirchhoff’s equations we can define the normal form of state space description of the circuit 

where i is the current of inductor and u voltage of the capacitor. The excitation is the voltage source e(t). 
Application of the forward Euler formula for tn=nTs changes this differential equations into the difference one 
described in the explicit matrix form as follows 

On the other side, applying the backward Euler formula leads to the implicit form of matrix description 

Thanks to the linear form of description it can be transformed to the explicit form as follows. 

Observe, that such inverse operation is possible only for linear systems. The nonlinear systems must operate 
with the implicit form of state equations. 

The stability of both systems (analog and discrete) depends on the eigenvalues of state matrix A. The analog 
linear system is stable, when all its eigenvalues are in the left-half plane of complex plane. The stability of 
discrete systems requires the position of poles inside of the unit circle. 

The analog system composed of passive RLC elements is stable from the definition (all eigenvalues in the 
left-half of the complex plane). However, stability of the discrete system depends on the type of approximation. 
In backward methods all eigenvalues are always inside of the unit circle, which means stability. Application of 
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forward Euler algorithm does not guarantee the stability. The position of eigenvalues depends on the assumed 
time step Ts. If it is too large the poles move outside the unit circle and the system converts to be unstable. 

As an example let us take R=1?, L=1H, C=1F in the last example. Assuming Ts=1,2s we get state matrix A in 
backward method as follows 

Its eigenvalues are equal ?1=0.439+j0.287, ?2=0.439-j0.287. Both eigenvalues are inside of the unit circle, 
hence the resulting discrete system is stable. On the other side applying this step size Ts in forward algorithm 
we get matrix A equal 

of the eigenvalues: ?1=0.4+j1.02, ?2=0.4-j1.02. These eigenvalues are outside the unit circle, hence, the 
discrete system is unstable. It can be stabilized reducing appropriately time step. For example at Ts=0,6s we get 
the matrix A equal 

The eigenvalues of this matrix are now: ?1=-0.7+j0.52, ?2=-0.7-j0.52. All of them are inside of the unit circle 
(stable system). 

The value of the discretization step Ts is important also for accuracy of approximation. Fig. 5.3 shows the 
results of approximation of the current i(t) at different values of Ts and application of backward and forward 
approximations. The backward algorithm delivers the stable results irrespective of the applied sampling period. 
However, the accuracy of solution depends on the size of discretization step. 

Different situation is in the case of forward algorithm. It might be unstable, if too long sampling period 
is applied. This is well illustrated in Fig. 5.3, presenting the results for Ts=0.02s, 0.6s and 1.2s. At Ts=1.2s the 
extrapolation (forward) algorithm has resulted in unstable solution, while the interpolation (backward) was 
stable, although the least accurate. 

a) 
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b) 

Fig. 5.3. Solution for i(t) in the circuit of Fig. 5.2 at application of: a) Euler forward, b) Euler backward 

algorithms at different lengths of sampling period Ts=0.021s, 0.6s and 1.2s. 
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5.2. Z transformation in discrete system description 

5.2.1. Definition of Z transformation 
Z-transformation converts a discrete-time signal, which is a sequence of real or complex numbers, into a 

complex frequency domain representation. It fulfills similar role in digital systems as Laplace transformation in 
analog systems. 

Let us consider x(n) as the discrete time series defined for n?0. Formally we define the single-sided Z-
transform of this time series in the following way 

 (5.9) 
The operator z-1 is interpreted as the unit delay operator associated with the sampling period Ts. The term 

z-k means operation of delay by k sampling periods. The transformation (5.9) is valid only for these values of z 
for which the (5.9) is convergent. 

As an example consider Z-transform of the signal x(n)=an1(n) According to the definition we have 

Assuming  this infinite geometric series is convergent, and its sum can be calculated from the 

expression  (a0 – the first term of series, q – the quotient). Using it we get 

This equality only holds if  (condition of convergence). In this case the region of convergence is 
the complex plane with a disc of radius centered at the origin and of radius a. 

In the special case of a=1, i.e. x(n)=1(n) we get 

Table 5.3 presents Z-transforms for some chosen time series, often used in electrical engineering [14,23]. 
Table 5.3. Z-transforms of some chosen time series. 
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x(n) X(z) 

?(n) 1 

1(n) 

an1(n) 

sin(?Tsn)1(n) 

cos(?Tsn)1(n) 

1(n) 

1(n) 

5.2.2. Properties of the Z-transform 
The properties of Z-transform are analogous to their counterparts of Laplace-transform. We will limit here 

only to few, the most often used in computation. 

• Linearity 

 (5.10) 

• Scaling in z-domain 

 (5.11) 

• Time delay 

Assuming (x(n)=0 for n<0) 

 (5.12) 
When x(n) are non-zero for n<0) 

 (5.13) 

• Convolution in time 

The convolution in discrete system is defined as 
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 (5.14) 
The Z-transform of convolution is the product of the Z-transforms of both functions 

 (5.15) 

• Time reversal 

Z(x(-n))=X(z-1) (5.16) 

• Decimation 

 (5.17)$latex $ 

• Value of x(n) at infinity and at zero 

 (5.18a) 

 (5.18b) 
 
5.2.3. Inverse Z-transform 
The Z-transform is an invertible operation. On the basis of X(z) we can reconstruct the original time series. 

The formal definition of inverse transformation is given in the form 

 (5.19) 
where C is a counterclockwise closed path encircling the origin and entirely in the region of convergence. 

However, direct application of this definition is very difficult, since in most cases of electrical engineering 
the function X(z) is complex (often rational). Therefore some other methods are applied. We limit here to the 
method based on residue theorem. 

Let us assume that X(z) is a rational function of the form 

 (5.20) 
This function possesses the poles which might be finite or infinite, complex or real, single or multiple. 

According to the residue theorem the original time series x(n) may be calculated from the expression 

 (5.21) 
The residues are calculated over all poles zk (k=1, 2, …, N) of the function. They are defined by the following 

expressions [16] 

• For single pole zk 

 (5.22) 
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• For multiple pole zk of the multiplicity l 

 (5.23) 
Example 5.3 
The procedure of inverse Z-transformation will be illustrated on the example of X(z) given as follows 

This function has two poles: z1=0,5 and z2=2. Hence, the original function is the sum of two residues 

The original function description contains two terms as a function of discrete time. Both depend on the 
values of poles. Observe that the first term decreases with time to zero and the second increases to infinity with 
t tending to infinity. 

Example 5.4 
The second example illustrates the case with double pole. Function X(z) is given in the form 

Taking into account the double pole at z1=0.5 we get the inverse Z-transform in the form 

 
In the case of complex poles the residue method requires tedious complex computations. In such case it is 

easier to decompose the given function into first and second order partial fractions, transform them to the 
forms, which appear in the table of Z-transforms and read the original time functions directly from this table. 

Example 5.5 
This will be illustrated by the following example 

This expression should be transformed to the form appearing in the fourth row of table 5.3. After making 
proper rearrangements we get 

It is evident now, that . The numerator should contain the term 

. Hence the final transformed expression for X(z) takes the form 

Comparing it with the prototype form from the fourth row of table 5.3 we get the solution for x(n) in the 
form 
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Example 5.6 
The next example of X(z) is in the form 

The prototype of this function in table 5.3 is the form appearing in the sixth row. We have to transform the 
given function to the form corresponding to this row. Therefore, 

The identification of the elements of the denominator shows that , 

. In such situation we may 
present the given function in the form 

from which we identify the original time series x(n) as 

5.2.4.Transfer function of discrete system 
Transfer function of discrete system is defined as the ratio of Z-transform of the response signal Y(z) to the 

Z-transform of the input excitation X(z) 

 (5.24) 
This function H(z) represents also the Z-transform of the impulse response h(n) of the discrete system, i.e., 

 (5.25) 
It follows from this 

 (5.26) 
In general, transfer function H(z) takes the rational form of the numerator L(z) and denominator M(z). 

Standard form of presentation of this function used in digital signal processing operates with the negative 
powers of z. Two different forms are recognized in such case [14,15]. 

• System of Finite duration of Impulse Response (FIR) 

 (5.27) 

• System of Infinite duration of Impulse Response (IIR) 

 (5.28) 
Each of these forms might be associated with the corresponding structure of digital circuit. In the case of FIR 

the transfer function defined as H(z)=Y(z)/X(z) can be presented as follows 
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 (5.29) 
Taking into account the time interpretation of the operator z-1 as the unit delay, we may write 

 (5.30) 
The structure of digital circuit corresponding to it is presented in Fig. 5.4. The building elements of this circuit 

are: the unit delay blocks represented by z-1, the blocks of gains described by polynomial coefficients bi (i = 0, 
1, …, M) and the summing block, adding the signals. 

Fig. 5.4. FIR discrete system structure. 

In the case of IIR system we do similar operations. However, this time we have two polynomials L(z) and M(z). 
Therefore, on the basis of (5.28) we may write 

(5.31) 
Transforming this expression to the time form we get 

(5.32) 
This equation may be represented by the circuit structures presented in Fig. 5.5. The figure on the left 

presents the non-canonical structure and on the right – the canonical one (minimum number of delay blocks). 

a) b) 

Fig. 5.5. Structure of IIR system: a) non-canonical with respect to the number of unit delays, b) canonical. 
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Canonical structure operates with the minimum number of unit delay blocks. Its number is equal to 
max(N,M). The significant difference between FIR and IIR structures is the presence of feedback in IIR, following 
from the existence of the denominator M(z). The FIR system does not possess the denominator. Hence, there 
are no poles, which might appear outside the unit circle. Therefore, the FIR circuit is always stable. 

The IIR system possesses the poles (roots of the denominator), therefore, its stability depends on their 
positions. Let us consider Bounded Input – Bounded Output (BIBO) stability of the system. In this respect the 
system is stable when at limited excitation x(n) the response of the system is always limited for any point of 
time. From the definition of transfer function it follows that Y(z)=H(z)X(z). It means the time response can be 
calculated from the formula 

 (5.33) 

in which  is the impulse response (response of circuit to the excitation ?(n)). 
The signal x(n) is limited by the definition. Therefore, the limitation of response y(n) depends only on h(n). 

The time form of h(n) depends on the positions of poles zk. of the transfer function H(z). Observe, that inversed 

form of H(z) depends on . Assuming zk=ak, from the transfer function 

 (5.34) 
for single poles we have 

 (5.35) 

In the case of multiple poles of multiplicity l there appears also the term , which corresponds in 
time domain to the additional component 

 (5.36) 
As it is seen, in discrete time systems the limitation of succeeding terms of the impulse response (condition 

of stability) depends on position of poles and their multiplicity. System is asymptotically stable (the impulse 

response tends to zero) when all poles are located inside of the unit circle . If any pole is outside this 
circle the discrete system is automatically unstable (the response tends to infinity with time). In the case of 
poles placed directly on the unit circle the stability depends on their multiplicity. If they are single, the system 
is stable but not asymptotically (the impulse response is always limited, but not zero). If the poles on the unit 
circle are multiple the discrete system is unstable. 

Transfer function of discrete system allows defining also the frequency characteristics. Frequency 
characteristics correspond to the frequency along the unit circle, i.e. for 

. Frequency characteristics are then defined as 

 (5.37) 
Absolute value of this function represents the magnitude characteristics and angle – the phase characteristic. 

Both are functions of frequency. 

5.3. Transformation of analog transfer function to discrete form 

There are many methods of transformation of the transfer function H(s) of analog system into transfer function 
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H(z) of the discrete system. The most often used in practice are two transformations. One is called the bilinear 
and the second invariance of the impulse response [14,16]. Both preserve the order of original analog system. 

5.3.1. Bilinear transformation 
Bilinear transformation is based on the trapezoidal method of integration of the differential equation 

dx/dt=f(t). According to the trapezoidal method, solution of x(t) in the discrete time point t=nTs can be written 
in the form 

 (5.38) 
In continuous time description the derivative is represented by the operator s, and in discrete time the 

unit delay operation is associated with the operator z-1. Therefore, the eq. (5.38) may be written using these 
operators. 

 (5.39) 
From this we get 

 (5.40) 
Taking into account fs=1/Ts we can present the above equations in a form allowing direct transformation 

H(s) into H(z) 

 (5.41) 
It is possible to return from H(z) to H(z) by writing z as a function of operator s 

 (5.42) 
The choice of the values of fs should satisfy the Nyquist theorem (the sampling rate fs should be higher 

than double value of the maximum frequency fmax existing in the signal). Determination of fmax requires the 
additional frequency analysis of the original analog system. 

Bilinear transformation provides stable mapping the continuous form of system description into discrete 
form. It means, that the poles of analog system in the left half-plane are moving to the inside of the unit circle. 
However, the frequency transformation is of nonlinear character. The relation between the angular frequency 
?a of the analog system and frequency ? of the discrete system is nonlinear. To show it let us assume the discrete 

system frequency characteristic defined for . Putting it into (5.41) we get 

 (5.43) 
where ?a represents the frequency on continuous time (analog) system. It means, that the unit circle 

described by  in discrete space is directly converted to imaginary axis of the complex variable s= j?a. This 
mapping is described by 

 (5.44) 
The bilinear transformation changes the frequency in a tangensoidal way. Only for very small values of 

frequency the relation is close to the linear one, since in such case  (in radial measure). 
5.3.2. Method of invariance of impulse response 
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In this method we assume that impulse response in sampling points of both (analog and discrete) systems 
should be equal. It means, that in sampling points we have 

 (5.45) 
The original transfer function H(s) can be presented in the form of partial fraction expansion using the poles 

pi of the system (only single poles are assumed here) 

 (5.46) 
The impulse response is then equal 

 (5.47) 
The equality of (5.45) requires 

 (5.48) 
Transfer function H(z) of discrete system is the Z-transform of h(n). Hence, from the definition of Z-

transformation we can write 

(5.49) 

Observe, that the term  of H(s) is changed to in discrete form of description. The 

pole pi of analog system has been converted to the pole of discrete one. Assuming stable analog 

system (pi in the left half-plane) we always get , and hence the condition of stability of discrete system 
is fulfilled. 

Example 5.7 
As an example consider the transfer function of analog system given as follows 

It should be converted to partial fraction form given below 

Application of eq. (5.49) allows getting the form of H(z) 

To obtain the purely numerical form of H(z) we have to find proper value of Ts. Let us assume the condition 
for fmax in the form 

Applying s=j?max to the transfer function H(s) we get 
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Solving it with respect to frequency we get ?max=200 and fmax=31.8. Let us assume fs=100 and Ts=0.01. 
Substituting it into H(z) we get final numerical form of discrete transfer function. 

It is easy to check that both poles of H(z) are inside of the unit circle. 
Program Matlab has many functions devoted to design of discrete systems, called further discrete filters. The 

basic functions applying analog prototypes in design of discrete (digital) filters include: butter.m (Butterworth 
filter), cheby1.m and cheby2.m (Chebyshev filters) and ellip.m (elliptic filters). Moreover, there is the graphic 
interface for designing many types of discrete filters, which is called FilterDesigner. 

5.4 Project devoted to filter design 

In one of the projects student should design the particular discrete filter of the specifications given by the 
teacher and applying manually all steps of design procedure based on analog prototype. Moreover, as a part of 
the project student should apply also the interface FilterDesigner [12] to design the proper band-stop filter to 
denoise the Haendel music corrupted by narrow band random noise (for example the file ‘handel_szum1.WAV’ 
accessible in ISOD). 

An example of the design procedure the following task is formulated. 
Part I: Design of discrete elliptic BP filter using analog prototype. 
Filter specifications: 

Rp=1 dB 
Rs=40dB 
Omega_p=[ 2000Hz 4000Hz] 
Omega_s=[1800Hz 4200Hz] 

%Matlab program: 
%Analog filter 
rp=1; 
rs=40; 
fp=[2000, 4000]; fstop=[1800, 4200]; 
fs=20000; fNy=fs/2; 

% Order of filter 
[n,wn]=ellipord(fp/fNy, fstop/fNy,rp, rs); 
[ba,aa]=ellip(n,rp,rs,wn,'s') 

%Frequency characteristics 
wa=0:0.01:1; 
ha=freqs(ba,aa,wa); 
figure(1) 
subplot(2,1,1),plot(wa*fNy,abs(ha)); grid % Linear plot 
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axis([0 10000 0 1]); ylabel('Magnitude - linear') 
title('Analog filter') 
subplot(2,1,2),plot(wa*fNy,20*log10(abs(ha))); 
grid % Linear plot 
axis([0 10000 -50 0]); 
xlabel('Frequency Hz'), ylabel('Magnitude - logarithmic') 

% Digital filter using bilinear transformation 
[bd,ad]=bilinear(ba,aa,1) 

%Frequency characteristics 
wd=0:0.001:1; 
[hd,wd]=freqz(bd,ad,wd); 
figure(2) 
subplot(2,1,1), plot(wd*fNy,abs(hd)), grid % Linear plot 
axis([0 10000 0 1]); ylabel('Magnitude - linear') 
title('Discrete filter') 
subplot(2,1,2), plot(wd*fNy,20*log10(abs(hd))), 
grid % Logarithmic plot 
axis([0 10000 -50 0]); 
xlabel('Frequency Hz'), ylabel('Magnitude - logarithmic') 

 
Part II: Using filterDesigner of Matlab design band-stop filter (elliptic) to denoise the music signals. 

Apply the following procedure: 
1) Read the noisy music signals: 

[y,fs]=audioread('handel_szum1.WAV'); 
soundsc(y); 

2) Determine frequency characteristic of the signal using the following command lines: 

[pxx, f]=pwelch(y,2048,512,[],fs,'onesided') 
plot(f,pxx), grid 

3) On the basis of frequency characteristic determine the required band-stop range of band-stop filter to remove 
the noise 

4) Apply filterDesigner to design proper elliptic band-stop filter of the estimated band-stop range and 
Rp=1dB, Rs=60dB 

5) Convert filter parameters to single section (menu: Edit->Convert to Single Section) and export to 
workspace of Matlab (meanu File->Export (Coefficients)). 
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6) Filter the noisy signal and listen to the denoised signals using the command 

z=filter(Num,Den,y) 
soundsc(z) 

5.4. Switched capacitor circuits 

5.4.1. Basic notions 
Switched capacitors circuits (shortly SC) represent specific form of implementation of discrete systems in an 

integrated form [22]. A switched capacitor works by moving charges into and out of capacitors when switches 
are opened and closed. The circuits operate with only capacitors cooperating with the switches controlled in 
two opposite phases of the sampling period. One half of the switching cycle is treated as an even (positive) 
and the second as an odd (negative) phase. Both phases are not overlapping. The graphical interpretation of the 
signals controlling the switches within the switching cycle is depicted n Fig. 5.6. 

a) b) 

Fig. 5.6. The signals controlling the switches: a) ?p – even phase, b) ?n – odd phase. 
The even phase will be denoted by us with the upper index p, and odd with the index n. The graphical 

symbols of switches closed in even (index p) and odd (index n) phases are presented in Fig. 5.7. 

 

a) 

 

b) 

Fig. 5.7. Symbols of switches connecting the input voltage U0 to the right terminal in a) even phase, b) odd 
phase. 

The switches are easy to implement in the integrated technology in the form of field effect transistors. An 
example of it is shown in Fig. 5.8. 
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a)                                                         b) 
Fig. 5.8 The MOS implementation of switch in SC circuit: a) SC circuit structure, b) implementation of switch 

by a MOS device. 
Proper arrangement of capacitors and configuration of switches allows implementing the effect of resistors, 

with the resistance dependent on the value of capacitance and frequency of controlling signal. This makes them 
more suitable for use within integrated circuits, where accurately specified resistors and capacitors are not 
economical to construct. 

Observe, that the signal is switched from one phase to the second one every half of the switching cycle and 
may be represented mathematically using the delay operator z-1/2. The output signal may be received in either 
even or odd phase. The same may be done with the input (source) signal. 

The structures supplying the circuits in the even (p) and odd (n) phase are presented schematically in Fig. 5.9. 

a) b) 

Fig. 5.9. The structures of supplying the S.C. circuit in a) even and b) odd phase. 
Let us denote the output voltage signal by U0 and input source by U1. Taking into account even and odd 

phases of operation of SC circuits we can define 4 types of transfer function. 

 (5.50) 

 (5.51) 

 (5.52) 

 (5.53) 
They may be also presented in a compact matrix form 
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 (5.54) 
These individual transfer functions differ only by the time delay associated with the switching moments. 
5.4.2. Circuit models of SC circuits 
Switched-capacitor circuits are analyzed by writing down charge conservation equations and solving them 

with a computer algebra tool. For hand analysis and for getting more insight into the circuits, it is also possible 
to apply the signal flow graphs, with a method that is very similar for switched-capacitor and continuous-time 
circuits. 

In each arrangement of switches and capacitor the flow of charge within the capacitor is analyzed and its 
change determined. The change of charge related to the time is interpreted as the current. In this way the 
resistive SC models of the circuit can be built [16,22]. 

Example 5.8 
The simplest switched-capacitor circuit is the switched-capacitor resistor, made of one capacitor C and two 

switches denoted symbolically by p (even phase) and n (odd phase) which connect the capacitor with a given 
frequency alternately to the input and output of the external circuit (Fig. 5.10). Each switching cycle transfers a 
charge q from the input to the output at the switching frequency f. The charge q on a capacitor C with a voltage 
V between the plates is given by: 

Fig. 5.10. The SC circuit with two opposite-phase switches. 

The changes of charge of the capacitor in even and odd phases are described by the equations 

 (5.55) 
Because this charge is transferred at a rate f, the rate of transfer of charge per unit time represents current 

i=f?q (the continuous transfer of charge from one node to another is equivalent to a current). The changes of 
the charge are equivalent to the currents flowing in the even and odd phases within the switching cycle T with 
f=1/T. Dividing the changes of charge by the period T we get the equivalent currents in both phases [16,22] 

 (5.56) 

The first term in both equations represents the resistor of the conductance . The second term 
represents some memory from the previous phase and is a form of voltage controlled current source, called 

storistor. The controlling coefficient is called storistance . The equation (5.56) can be 
associated with the circuit model presented in Fig. 5.11. The currents of the terminals are defined only for even 
phase (input terminal) and odd phase (output terminal). 

Example 5.9 
The second example is the SC circuit with four switches connecting the capacitor C to four different 

terminals of the external circuit denoted by the voltages: U1, U2, U3 and U4 as is shown in Fig. 5.12. 
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Fig. 5.11. Storistor-resistor model of the SC circuit of Fig. 5.10. 

Fig. 5.12. Switched capacitor circuit with 4 switches. 

The changes of capacitor charge in both phases of switching cycle and the currents following from it are given 
by 

 (5.52) 
The equivalent resistor-storistor model of this circuit is presented in Fig. 5.13. 

Fig. 5.13. Storistor-resistor model of the SC circuit of Fig. 5.12. 

Example 5.10 
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Fig. 5.14 show the structure of capacitor with two switches, both controlled in even phase. In the odd phase 
the capacitor is isolated. 

Fig. 5.14. The capacitor with two switches turned on only in even phase. 

The change of charge and currents flowing in even phase through capacitor are as follows 

 (5.53) 
The equivalent model of the SC circuit is presented in Fig. 5.15. It takes the form of parallel connection of 

resistor of the conductance G=Cf and the storistor controlled by its own voltage (described by the admittance 
Y(z)=-z-1Cf). In an odd phase the flow of signals between input and output terminals of SC circuit stops. 

Fig. 5.15. Model of SC circuit of Fig. 5.14. 

Example 5.11 
Fig. 5.16 presents the grounded capacitor which is short circuit by the switch in odd phase. 

Fig. 5.16. Capacitor with one switch closed in odd 

phase. 

From the change of charge of the capacitor we get 
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 (5.54) 
The resistor-storistor model of this circuit is presented in Fig. 5.17. The circuit represents the conductance 

G=Cf in even phase and short circuit in odd phase. 

Fig. 5.17. The SC model of the circuit of Fig. 5.16. 

Example 5.12 
Fig. 5.18 shows the structure of SC circuit composed of floating capacitor and two switches, operating in 

even and odd phases. 

Fig. 5.18. Floating capacitor with two switches operating in different 

phases. 

From the equations describing the change of charge of capacitor we get 

 (5.55) 
The model of this circuit is presented in Fig. 5.19. The floating resistor of the conductance G=Cf is 

implemented in even phase. In odd phase we observe the break in transmission of signals. 

Example 5.13 
Fig. 5.20 presents typical symmetrical structure of SC circuit, containing 4 switches and implementing the 

resistance in even phase. 
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Fig. 5.19. Model of the SC circuit of Fig. 5.18. 

Fig. 5.20. The symmetrical SC circuit structure with four switches 

implementing the resistance. 

From the equations describing the change of charge of capacitor we get 

 (5.56) 
It is evident, that the circuit of Fig. 5.21 in even phase implements the pure floating resistor of conductance 

G=Cf. In odd phase the circuit represents the break. 

Fig. 5.21. Resistive model of SC circuit of Fig. 5.20. 

Two next examples represent the capacitors, deprived of any switches. Elements of this type of connection are 
also present in the SC circuits. 

Example 5.14 
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Fig. 5.22 shows the grounded capacitor. 

Fig. 5.22. The grounded 

capacitor. 

The changes of charge of the capacitors in both phases are described by 

 (5.57) 
The storistor-resistor model of this circuit is shown in Fig. 5.23. In both phases the circuit is symmetrical and 

contains the parallel connected resistor of the conductance G=Cf and storistor in the form of current source 
controlled by the voltage from opposite phase. 

Fig. 5.23. Storistor-resistor model of the grounded capacitor. 

Example 5.15 
Fig. 5.24 present the floating capacitor included in the circuit in both phases (no switches). 

Fig. 5.24 The floating capacitor connection. 

The changes of charge of the capacitors in both phases are described by 
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 (5.58) 
The storistor-resistor model of this element is presented in Fig. 5.25. Similarly to the previous example 

the circuit is symmetrical and contains the parallel connected floating resistor of the conductance G=Cf and 
storistor in the form of current source controlled by the voltage from opposite phase 

Fig. 5.25 Storistor-resistor model of the floating capacitor. 

The SC circuits are commonly used in connection with operational amplifiers. In analysis of such circuits we 
should apply also the proper model of the amplifiers in both phases. If the amplifiers are included in the circuit 
without switches they are doubled (one in even and the second in odd phase). Such situation is presented in 
Fig. 5.26. 

If the amplifier is included in the circuit through the switches only in one phase of switching cycle, for example 
even phase, as shown in Fig. 5.27, its model is included only in this phase. In the opposite phase it is absent. 

Fig. 5.27 Model of operational amplifier connected to the external circuit only in even phase . 
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Fig. 5.26. Model of operational amplifier acting in even and odd phase. 

5.4.3 Application of SFG in analysis of SC circuits 
Analysis of SC circuits is a complex task, since the equivalent resistor-storistor circuit is usually large. In 

such case good tool of analysis is application of signal flow graphs. 
The procedure of analysis may be split into few stages [16]: 

• 1) Build the storistor-resistor model for each elements of the SC circuit. This includes the elements 

with switches, capacitors without switches, operational amplifiers and excitation sources. As a result 

we get the typical form of electrical circuit containing resistors, storistors, controlled sources and 

operational amplifiers in both phases of switching cycle. 

• 2) In the next step build the signal flow graph using the models discussed in chapter 1. 

• 3) In the last step apply the Mason gain formula to calculate the needed transfer functions. 

In the case of ideal operational amplifiers (infinite gain, zero output impedance and infinite input impedance) 
with grounded non-inverting node we suggest to apply the simplified SFG model of the circuit (Fig. 1.6 of 
chapter 1), which is repeated here in the form shown in Fig.5.28. 

a) 

b) 
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Fig. 5.28. Automatic way of building SFG for the typical connection of operational amplifier with grounded 
non-inverting input: a) real connection of elements, b) Mason graph corresponding to such connection. 

The procedure of analyzing SC circuits with operational amplifiers will be presented on two examples. 
Example 5.16 
Let us assume the SC implementation of the integrating circuit presented as RC connection in Fig. 5.29a. 

The resistor should be substituted by proper switched capacitor connection as in Fig. 5.20. The final circuit 
implementing SC version of integrator is shown in Fig. 5.29b. 

 

a) 

b) 

Fig. 5.29. The integrating circuit: a) RC structure, b) SC implementation of the circuit. 
Applying the storistor-resistor models of the elements, forming the SC structure, we get its model presented 

in Fig. 5.30a. 
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a) 

b) 

Fig. 5.30. Model of SC integrator: a) storistor-resistor form, b) SFG model. 
The signal flow graph corresponding to this storistor-resistor model is shown in Fig. 5.30b. Applying Mason 

gain formula allows getting two transfer functions Hpp(z) and Hnp(z) as follows 

 (5.59) 

 (5.60) 
Both forms differ only by the delay term z-1/2 corresponding to delay of response by half of the switching 

cycle. This form of implementation of integrator is known as Lossless Discrete Integrator (LDI). 
Example 5.17 
The next example shows the structure of the biquadratic filter implemented in SC technology (Fig. 5.31) [22]. 
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Fig. 5.31. The SC structure of biquadratic filter. 

Fig. 5.32 depicts the storistor-resistor model of this circuit. It applies two symmetrical switched capacitor 
connections (C1, C3), one unsymmetrical four-switch capacitor connection (C2), three non-switched capacitors 
(Cf1, Cf2, C4) and two non-switched operational amplifiers, treated as ideal. 

 

Fig. 5.32. The storistor-resistor model of the biquadratic filter implemented in SC technology. 

Applying the procedure of automatic building signal flow graph, the circuit structure of Fig. 5.32 can be easily 
converted to SFG representation, as shown in Fig. 5.33. 
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Fig. 5.33. Signal flow graph representing the circuit of Fig. 5.32 

Applying Mason formula we obtain two transfer functions of the circuit: Hpp(z) and Hnp(z) in the form 

 (5.61) 

 (5.62) 
Observe that these functions are different only by the term z-1/2 in the numerator (half of the switching 

cycle). 

5.5 Exercises 

1. Apply inverse Z transform to calculate x(n) for 

2. a) X(z)=2z/(z-0.3)2 

3. b) X(z)=1/(z2+2z+3) 

Solutions: 
Ad a) 
There are 2 identical roots z1=z2=0.3 of the denominator. Therefore, inverse transform is calculated from the 

expression 

Ad b) 
This function has two single roots z1=-1 and z2=-2 of the denominator. Therefore, the inverse transform is 

calculated from the expression 
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1. Determine transfer function H(z)=Y(z)/U(z) for discrete system described by the following 

difference equation 

y(n)=2y(n-1)+3y(n-2)-0.5y(n-3)+5x(n)-0.7x(n-1) 
Solution: 
Applying Z-transform to both sides of equation we get 
Y(z)=2z-1Y(z)+3z-2Y(z)- 0.5z-3Y(z)+5X(z)-0.7z-1X(z) 
Hence 

 

1. Transform H(s)=1/(s2+2s+5) into H(z) using the bilinear transformation 

Solution: 
In bilinear transformation we apply the following mapping 

First, we have to estimate value of sampling rate fs. Assume the maximum frequency fmax of the filter, at 
which the magnitude characteristic drops below 0.01. Hence , we get 

Solving this equation with respect to ? we get ?max=103. It means, that fmax= ?max/2?=16.4Hz. Sampling 
rate fs should satisfy fs>2fmax. Let us choose fs=50. Hence 

Supplying it into H(s) we obtain transfer function of discrete system in the form 

 

1. Draw storistor-resistor model for the SC circuit shown below 

Solution: 
The storistor-resistor model is presented below 
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Fig. 5.34a Switched capacitor circuit structure 

Fig. 5.34b The storistor-resistor model of the SC circuit 

1. Draw storistor-resistor model for the SC circuit with operational amplifier shown in Fig. 5.35a. 

 

Fig. 5.35a Switched capacitor circuit structure 

Solution: 
The storistor-resistor model of the SC circuit is presented below 
 

Basic definitions 

Backward Euler method –is the most basic numerical implicit method for the solution of ordinary differential 
equations. It implements the differentiation of signal by applying finite difference in step back. 

BIBO stability – short name of bounded-input, bounded-output. It is a form of stability for linear systems 
that take inputs. The system is BIBO stable, if the output is bounded for every input to the system that is 
bounded. 
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Fig. 5.35b The storistor-resistor model of the SC circuit from Fig. 5.35a 

Bilinear method – the first order transformation of continuous-time system to discrete-time 
representation, and vice versa. It is based on trapezoidal rule of integration. 

Difference equation – the equation defining the actual response of discrete system on the basis of its past 
values determined in discrete time instants. 

Convolution – the mathematical operation on two signals x and y to produce a third signal z as the integral 
of the product of the two signals after one is reversed and shifted. The convolution of x and y is written x*y, 
using an asterisk or star. 

Discrete system – the type of system, in which information of signals is accessible only at discrete time 
points tk=kTs, where Ts is a sampling period and k the time index. It is usually contrasted with continuous 
systems (called analog systems), in which the signal information is available for any point of time. 

Even phase – The even phase of clock in which the capacitor samples the analog voltage through the closed 
switch. 

FIR system – the discrete system whose impulse response (or response to any finite length input) is of finite 
duration, because it settles to zero in finite time. 

Forward Euler method – the numerical explicit method for the solution of ordinary differential equations. 
It implements the differentiation of signal by applying finite difference in step forward. 

IIR system – the discrete system whose impulse response (or response to any finite length input) is 
of infinite duration. Such system has internal feedback that may continue to respond indefinitely (usually 
decaying with time). 
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Invariance of impulse response – method of transforming analog system into discrete system description. 
It assumes that impulse response in sampling points of both (analog and discrete) systems should be equal. 

Inverse Z-transform – conversion of complex frequency-domain z-representation of signal back to the 
original discrete time signal description. 

Odd phase – The odd (alternative to even) phase of clock in which the capacitor samples the analog voltage 
through the closed switch. 

State space representation – mathematical model of a physical system as a set of input, output and 
state variables related by first-order differential equations (analog systems) or difference equations (discrete 
systems). State variables are internal variables whose values evolve through time and allow determining 
uniquely any output variables. 

Storistance – the controlling coefficient of the storistor represented usually by the admittance type 
description. 

Storistor – the memory element representing some memory from the previous phase in switched capacitor 
circuit. It is usually presented a form of voltage controlled current source. 

Storistor-resistor model – the conventional circuit model of switched capacitor circuit operating with 
equivalent resistors and storistors described by their admittance functions representing the average voltage and 
current relations within the switching period. 

Switched capacitor – electronic circuit element used for discrete-time signal processing. It works by 
moving charges into and out of capacitors when switches are opened and closed. 

Unity delay – the delay of signal by one sampling period. When placed in an iterating subsystem, it holds 
and delays its input in one iteration. This block is equivalent to the z-1 discrete-time operator. 

Z-transform – conversion of a discrete-time signal (a sequence of real or complex numbers) into a complex 
frequency-domain representation. It is a discrete-time equivalent of the Laplace transform. 

 

Discrete time systems    149

https://en.wikipedia.org/wiki/Frequency-domain
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Difference_equation
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Discrete-time_signal
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Capacitor
https://en.wikipedia.org/wiki/Switch
https://en.wikipedia.org/wiki/Discrete-time_signal
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Frequency-domain
https://en.wikipedia.org/wiki/Laplace_transform


6.   Nonlinear elements 

To the important class belong nonlinear circuits, the circuits containing at least one nonlinear element [3]. 
In contrast to linear the nonlinear element is characterized by the nonlinear relation between the input 
variable x(t) and output response y(t). The response depends not only on the input signal, but also on 
the internal parameters representing the nonlinearity with respect to the input signal, i.e., 

, where  p1, p2, …, pn are the internal parameters of the element. If 
these parameters are independent on time the nonlinear element is stationary. The nonlinear circuit does not 
obey the superposition rule. It means, that in general case 

                                                                                 (6.1) 
Hence, in analysis of nonlinear circuit we have to take into account simultaneously all excitations existing 

in the circuit, even, when they represent different characters (for example DC, sinusoidal, exponential, etc.). 
Moreover, the solution of most practical nonlinear circuits seldom exists in analytic form. Consequently, the 
solution of the most practical nonlinear circuits must be obtained either by graphical or numerical methods. 

6.1. Basic notions of nonlinear elements 

The description of the nonlinear element may involve different variables associated with the element: current i, 
voltage u, charge q of capacitor or flux linkage ψ in magnetic coil. These variables satisfy the basic definitions 

                                                                                                         (6.2) 
and represent the nonlinear relations. In general case we can recognize four types of nonlinear elements 

[3,16] 

1. Nonlinear resistor characterized by the current-voltage relation (u,i) 

2. Nonlinear coil characterized by the flux-current relations (ψ, i) 

3. Nonlinear capacitor characterized by the charge-voltage relation (q, u) 

4. Nonlinear memristor defined by the general relations charge-flux (ψ, q) 

Let us assume the notation x for independent variable and y for dependent one. The above general implicit 
descriptions of the elements might be converted to explicit form (if exists) by expressing one variable as the 
function of the second one. In such case three types of elements can be recognized 

• Element controlled by x, described explicitly by y=f(x) 
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• Element controlled by y, described explicitly by x=g(y) 

• Element of monotonic characteristics, having both possible descriptions: y=f(x) and x=g(y). 

Each nonlinear characteristic can be associated with two types of parameters: static and dynamic.  Assume 
for simplicity element described by y=f(x). In the operating point x0 we can define [3,16] 

•  Static parameter τ(x0) 

                                                                                                            (6.3) 

• Dynamic parametr D(x0) 

                                                                                             (6.4) 
In the case of linear elements these parameters are equal. However, this is not the case for nonlinear 

elements. 
 
Example 6.1 
Let us consider the nonlinear element of the input-output characteritic y=f(x) shown in Fig.6.1. Applying 

definitions (6.3) and (6.4)  we get the static and dynamic characteristics shown in Fig. 6.1. They differ 
significantly. From the practical point of view only dynamic characteristic is important in electrical 
engineering. 

 

The nonlinear elements may be stationary or non-stationary. [3]. The nonlinear element is stationary, if its 
parameters do not depend on time and only on input variable  x. It means that the dynamic parameter depends 
only on the input variable, that is D=D(x). Otherwise the element is non-stationary, for which D=D(x,t). 

An example of nonlinear element is resistor described by the function . The dynamic 

parameter represents the conductance G, which is expressed by . 
In the case, when the nonlinear description of elements includes time in explicit way, for example 

 the element is non-stationary  and its dynamic parameter is a function of time, 

. 
The nonlinear elements might be passive or active. Passive element does not generate the energy at any 

point of time and active element is a source of energy, at least in some region of operating points. From the 
mathematical point of view the passivity is strictly connected with the following condition [3,13,16] 

 

                                                                                (6.5) 
The element is passive, if for any point of time we have E≥0, and active, if in some period of time we deal with 

a situation, that E<0.  If E=0, the element is passive and lossless. The examples of passive and active element 
characteristics are presented in Fig. 6.2. 
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Fig. 6.1. Graphical interpretation of static and dynamic parameters of nonlinear element. Upper graph shows 

the nonlinear characteristic of the element, middle – the static parameter changes and bottom – the dynamic 

parameters. 

a) b) 

Fig. 6.2. The example of current-voltage characteristic of  a) passive, b) active resistive element. 
In the case of passive element the derivative of characteristic for all values of voltage is positive (the dynamic 

conductance is positive). The active element of Fig. 6.2b shows negative values of derivative in the region 
extending from u1 to u2 (the negative dynamic conductance). 

 

6.2. Nonlinear resistive elements 

In this class we can recognize 2-terminal elements, called simply nonlinear resistors, and multi-terminal (for 
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example 3-terminal) elements. The typical symbols used in notation of nonlinear resistors are presented in Fig. 
6.3 [3,16]. The resistive element can be completely characterized by the voltage-current relations. The directions 
of current and voltage are opposite. 

Fig. 6.3. Two symbols of nonlinear resistor used in practice. 

The general description of resistor, which always exists, is given in an implicit form f(uR,iR)=0. If the voltage-
current characteristic is unambiguous with respect to either current or voltage we can recognize three types of 
elements: 

• Resistor controlled by the voltage, description iR=g(uR) 

• Resistor controlled by the current, description uR=f(iR) 

• Monotonic resistor, possessing both types of description iR=g(uR) and uR=f(iR), while uR=g-1(iR). 

Depending on the type of characteristic we can define dynamic parameter as: 

• Resistance   for current controlled element 

• Conductance  for voltage controlled element 

In contrast to linear element the dynamic resistance of the nonlinear element is the function of the controlling 
variable (either current or voltage). In the case of monotonic characteristic both descriptions (resistance and 
conductance) are determined in a unique way. The resistor is passive if for any time point the following 
inequality condition holds 

                                                                                               (6.6) 
The passivity condition is satisfied if the dynamic parameter is positive in the whole range of input signal 

values. 
Among nonlinear resistive elements the important class are the multi-terminal elements. In such case the 

voltages and currents of terminals form the vectors, denoted as following. 
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The general description of the  n-terminal element can be described in an implicit form . In 
most cases this implicit vector form can be expanded into few explicit relations, characterizing one variable as 
the function of the others. 

 
6.2.1. Examples of nonlinear 2-terminal nonlinear resistors 
The typical examples of nonlinear 2-terminal resistors are the electronic elements: diode, Zener diode, tunnel 

diode, diac, varistor, thermistor, etc. Table 6.1 presents symbols and current-voltage characteristics of some 
chosen elements [16]. 

 
Table 6.1 Examples of nonlinear 2-terminal resistive elements. 
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Name Symbol and characteristics of elements 

Diode 

Zener diode 

Tunnel diode 

 

Varistor 
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Diac 

The diode construction is based on p-n junction. This junction can be activated in forward or reverse direction. 
A p–n junction diode allows electric charges to flow in one direction, but not in the opposite one. The negative 
charges (electrons) can easily flow through the junction from n to p but not from p to n, and the reverse is true 
for holes. When the p–n junction is forward-biased, electric charge flows freely due to reduced resistance of the 
p–n junction (diode represents very small resistance). When the p–n junction is reverse-biased, however, the 
junction barrier (and therefore resistance) becomes greater and charge flow is minimal (diode resembles open 
circuit). 

Signal diodes are produced for small currents (typically below 1A) and low voltages (typically below 50V). 
 Power diodes are built for very high currents and voltages. Both have the rectification property, allowing the 
current flow only in one conducting direction. The mathematical description of current-voltage (id, ud) relation 
of diodes is usually presented in the form (valid for small frequency) 

                                                                                                       (6.7) 
The variable Vt represents the thermal voltage (typical Vt≈26mV for silicon) and I0 is the saturation current 

or scale current of the diode. Analyzing this relations we find that above some thresholding value of voltage 
the current grows rapidly. The value of this threshold depends on material, from which the diode is made. For 
silicon it is about 0.7V, for germanium 0.4V, for Schottky diode 0.3. In many higher voltage applications diode 
can be treated either as short circuit (in the conducting mode) or open circuit (in non-conducting mode). 

A Zener diode is a particular type of diode that, unlike a normal one, allows current to flow not only from 
its anode to its cathode, but also in the reverse direction, when the Zener voltage is reached. Zener diodes 
break down with a reverse voltage but the voltage and sharpness of the knee are well defined. Zener diodes can 
reliably operate in this region, providing the stable operation with a stabilized voltage. 

A tunnel diode, called also Esaki diode, is a type of semiconductor diode that has negative resistance in some 
range of voltages due to the quantum mechanical effect called tunneling. In the diode characteristic presented 
in Table 6.1 this range extends from Us to Ud. The tunnel diodes show great promise as an oscillator and high-
frequency threshold (trigger) device. 

A varistor is an electronic component with an electrical resistance that varies with the applied voltage. It 
represents a voltage-dependent resistor (VDR), which may be described by 

                                                                                                      (6.8) 
Its characteristic is nonlinear, and to some degree similar to that of a diode. In contrast to a diode, however, 

it has the same characteristic for both directions of traversing current. At low voltage it has a high electrical 
resistance which decreases as the voltage is raised. 

The diac (acronym of “diode for alternating current”)  is a diode that conducts electrical current only after its 
breakover voltage, VBO, has been reached momentarily.  When breakdown occurs, the diode enters a region 
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of negative dynamic resistance, leading to a decrease in the voltage drop across the diode and, usually, a sharp 
increase in current through the diode. The diode remains in conduction until the current through it drops below 
a value characteristic for the device, called the holding current. Below this value, the diode switches back to 
its high-resistance, non-conducting state. This behavior is bidirectional, meaning typically the same for both 
directions of current. 

 
6.2.2. Examples of 3-terminal nonlinear elements 
The 3-terminal elements represent very important class of nonlinear resistors (in a low frequency 

applications). To this class belong bipolar transistors, field-effect transistors, thyristors and triacs. Table 6.2 
presents some chosen 3-terminal elements and their current-voltage characteristics [16]. 

 
Table 6.2 Examples of chosen 3-terminal nonlinear elements 
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Name Symbol Characteristics of elements 

Bipolar transistor 

Field-effect transistor 

n-channel 

p-channel 

Thyristor 
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Triac 

 

 
A bipolar junction transistor is a type of transistor that uses both electron and hole charge carriers. In 

contrast, unipolar transistors, such as field-effect transistors, only use one kind of charge carrier. Bipolar 
transistors use two junctions between two semiconductor types, n-type and p-type and are manufactured as 
NPN and PNP. They are available as individual components, or fabricated in integrated circuits, very often in 
large numbers. Bipolar transistors have three terminals called: collector, emitter and base. 

The collector–emitter current can be viewed as being controlled by the base–emitter current (current 
control), or by the base–emitter voltage (voltage control). These views are related by the current–voltage 
relation of the base–emitter junction, which is the usual exponential current–voltage curve of a p–n junction 
(diode). 

Bipolar transistor can be characterized by different parameters defined on the basis of input and output 
characteristics. For example, the input dynamic resistance rBE is defined from the characteristic UBE=f(IB) 

                                                                                           (6.9) 
From the output characteristic IC = f(UCE) assuming UBE=const or IB = const we can define the output 

resistance rCE 

                                                                                                         
                                       (6.10) 

From the characteristic IC = f(IB) assuming UCE = const we obtain the current gain characteristics 

                                                                                                                 (6.11) 
We can recognize the common-emitter current gain represented by βF and approximated as the ratio of the 

DC collector current to the DC base current in forward-active region βF=IC/IB. It is typically greater than 50 for 
small-signal transistors, but can be smaller in transistors for high-power applications. Another parameter is the 
common-base current gain, αF, treated  as the gain of current from emitter to collector in the forward-active 
region, αF=IC/IE. This ratio usually has a value close to unity; between 0.980 and 0.998. Both gains are related 
to each other as βF= αF /(1- αF). 

The field-effect transistor (FET), known also as unipolar transistor, is a transistor that uses an electric field 
to control the electrical behavior of the device. Many different implementations of field effect transistors exist 
(JFET, MOSFET, GASFET, etc.). The FET’s three terminals are: 
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1. Source (S), through which the carriers enter the channel. The current entering the channel at S is 

designated by IS. 

2. Drain (D), through which the carriers leave the channel. The current entering the channel at D is 

designated by ID. Drain-to-source voltage is UDS. 

3. Gate (G), the terminal that modulates the channel conductivity. By applying voltage to G, one can 

control the drain current ID. 

Field effect transistors generally display very high input impedance at low frequencies. The conductivity 
between the drain and source terminals is controlled by an electric field in the device, which is generated by the 
voltage difference between the body and the gate of the device. The characteristics curves show three different 
regions of operation for a MOSFET and these are: 

• Cut off region – region where the UGS is less than threshold voltage Up. For MOS to be in cut-off 

region, the necessary conditions are  0 < UGS < Up for NMOS and 0 > UGS > Up for PMOS (threshold 

voltage of PMOS is negative). The magnitude of current flowing through MOS in cut-off region is 

negligible as the channel is not present. 

• Linear or non-saturation region – for NMOS, as gate voltage increases beyond threshold voltage, 

channel is formed between source and drain terminals. When the voltage difference between source 

and drain exists, the current will flow. The magnitude of current increases linearly with increasing 

drain voltage till a particular drain voltage determined by the relations UGS ≥ Up and UDS < UGS – 

Up. The current is represented as a linear function of UGS and UDS voltages. The linear region 

voltage-current relation is given as follows: 

                                                                      (6.11) 
Similar relations are for PMOS. 

• Saturation Region – at a certain gate and source voltage, there is a particular level of voltage UDS, 

beyond which, increasing drain voltage has no effect on current. The conditions are given as: UGS ≥ 

Up and UDS > UGS – Up. The current now, is a function only of gate and source voltages: 

                                                                        (6.12) 
Field-effect transistors have found very wide applications in electronics. One specific one, interesting from 

theoretical point of view is constant-current diode. The symbol of it and structure of implementation are shown 
in Fig. 6.4. 
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a) 
b)  

 
c) 

Fig. 6.4. Constant-current diode: a) symbol, b) circuit configuration based om FET, c) current-voltage 
characteristic. 

 
The operating point of transistor is in the saturation region. The value of current needs to solve the following 

nonlinear equation  (UGS=-RID) 

                                                     (6.14) 
This value depends on the parameters of FET and resistance R. 
A thyristor is a semiconductor device with four layers of alternating P- and N-type materials. It acts 

exclusively as a bi-stable switch, conducting when the gate receives a current trigger, and continuing to 
conduct until the voltage across the device is reversed biased, or until the voltage is removed (by some other 
means). It behaves like a controlled diode. Thyristors are widely used in energo-electronic circuits, where they 
perform the role of switches. 

TRIAC (short name for TRIode for Alternating Current, is a three terminal electronic component that 
conducts current in either direction when triggered. It acts like thyristor, but the current can flow in both 
directions. The characteristics of both thyristor and triac are unambiguous with respect to the current of 
element and depend also on the current of the gate. 

6.3. Nonlinear inductors 

An inductor, also called a coil or choke is a passive two-terminal electrical component that stores energy in 
a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire 
wound into a coil around a ferromagnetic core. The general notations of nonlinear inductor, which are used in 
engineering are shown in Fig. 6.5a [3,16]. 

a) 

 

b) 

 

Fig. 6.5 Symbols of nonlinear inductor: a) general symbol, b) symbol of coil built using the ferromagnetic core. 
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When the current flowing through an inductor changes, the time-varying magnetic field induces an 
electromotive force (voltage) in the conductor, described by Faraday’s law. According to Lenz’s law, the induced 
voltage has a polarity (direction) which opposes the change in current that created it. As a result, inductors 
oppose any changes in current through them. 

The magnetic flux (often denoted as Φ) through a surface is the surface integral of the normal component of 
the magnetic flux density B passing through that surface. In the case of many turns of windings we define the 
flux linkage ψ, which is the total magnetic field passing through the surface (i.e., normal to that surface) formed 
by a closed conducting loop coil and is determined by the number N of turns in the coil and the magnetic flux, 
i.e., ψ=N Φ. 

The description of inductor associates the flux linkage ψ and current i. If we consider the inductor built on 
the basis of ferromagnetic core and neglect the hysteresis phenomena the characteristic (ψ, i) may be regarded 
as monotonic., i.e., both descriptions exist: ψ=f(i) and i=g(ψ). In the case of hysteresis consideration only the 
general implicit form description of coil f(ψ, i)=0 exists. 

The voltage-current relation of the nonlinear inductor results from the flux description. Assuming stationary 
inductor and its flux linkage description in the form ψ=f(i) we get 

                                                                      (6.15) 

The inductance of the coil defined as the derivative of flux linkage with respect to current   is 
the nonlinear function of this current. Fig. 6.6 depicts this relations for the coil of the ψ(i) characteristic shown 
as in the upper curve. Assuming linear flux-current characteristic (linear coil) we get L(i)=const. 

Fig. 6.6. The typical characteristics of the nonlinear coil: upper curve presents the dependence of  ψ from i 

and the bottom curve – the nonlinear inductance L(i). 

In the case of complementary description i=g(ψ) we get the following relation 

                                                          (6.16) 
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The often applied approximation of the coil is of the polynomial form i=aψ+bψk of the index k depending on 
the steepness of the characteristic (typical values  k=3, 7, 9). In such case we have 

                          (6.17) 
In the case of non-stationary coil, the flux linkage depends directly on time, i.e., ψ=f(i,t). In such case the 

voltage-current relations is defined as 

                                                         (6.18) 
The nonlinear stationary inductor is passive, if the following condition holds: 

                                                               (6.19) 
For the inductor controlled by the current this condition may be written in the form 

                                                               (6.20) 
from which it is evident that the inductor is passive if for all values of current the condition L(i)≥0 holds. 
Very often in practice we deal with the multi-terminal inductors. Its general notation  including currents and 

terminal voltages is depicted in Fig. 6.7. 

Fig. 6.7 The general notation of the multi-terminal inductor. 

If we assume the vector notations of currents, voltages and flux linkages for stationary multi-terminal inductor 
as shown below 

                                                   (6.26) 
the voltage-current description of it can be presented as follows 
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(6.22) 
which can be also written in compact matrix form 

                                                                                               (6.23) 
L(i) represents the Jacobian matrix composed of partial dynamic inductances of the coils. 
If we need the inductor of the specific type of flux-current characteristic, different from the natural one, 

corresponding to the ferromagnetic curve, we can apply special circuit built on the basis of mutator loaded by 
the nonlinear resistor of the needed characteristic, as shown in Fig. 6.8 [4,16] 

Fig. 6.8 Implementation of nonlinear inductor of the specific characteristic by using the mutator loaded by the 

nonlinear resistor. 

Mutator is a special type of dynamic 2-ports of the very specific chain matrix description 

• Converter-type mutator 

                                                                                  (6.24) 

• Inwerter-type mutator 

                                                                        (6.25) 
The coefficients k1 and k2 represent the scale of transformation and s is the differentiation operator. In the 

case of converter-type mutator we have 

                                                                                                      (6.26 
From the first equation we get the description of the flux linkage ψ1 

                                                    (6.27) 
Similarly from the second equation (6.26)  we have 

                                                                                             (6.28) 
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Hence, from the input terminals of the mutator loaded by the nonlinear resistor uN=f(iN) we see the inductor 
of the following description based on the nonlinear resistor characteristic 

                                                                       (6.29) 
The voltage-current relation of the inductor, which is seen from the input terminals of the network is 

described now in the following form 

                                                                         (6.30) 
It is evident, that the dynamic inductance is described by 

                                                                                                   (6.31) 
Its value depends on the coefficients k1 and k2 of mutator and the derivative of the characteristic of the 

nonlinear resistor with respect to its current. 
In the case of the second type of mutator we have the following relations following from the matrix 

description (6.24) 

                                                                                                      (6.32) 
Applying the same mathematical manipulations as for the first type of mutator we get 

                                                       (6.33) 

                                                                                   (6.34) 
Mutator loaded by the nonlinear resistor of the characteristic iN=g(uN) implements the inductor described 

by 

                                                                       (6.35) 
The voltage-current relation in the input terminals is given now in the form 

                                                                         (6.36) 
From which it is evident that the dynamic inductance is described by 

                                                                                                 (6.37) 
The choice of mutator depends on the type of nonlinear resistor applied in circuit structure, whether it is 

resistor controlled by the voltage or by the current. 
 
6.3. Nonlinear capacitors 
A capacitor is a passive two-terminal electrical component that stores potential energy in an electric field. 

The effect of a capacitor is known as capacitance C. While some capacitance exists between any two electrical 
conductors in proximity in a circuit, a capacitor is a special component designed to add capacitance to a circuit. 
Practical capacitors are available commercially in many different forms. The type of internal dielectric, the 
structure of the plates and the device packaging all strongly affect the characteristics of the capacitor, and its 
applications. Values available range from very low (pico-farad range) up to very high values kilo-farad range) 
in supercapacitors. The general symbol of the nonlinear capacitor is presented in Fig. 6.9. 

Nonlinear elements    165

https://en.wikipedia.org/wiki/Passivity_(engineering)
https://en.wikipedia.org/wiki/Terminal_(electronics)
https://en.wikipedia.org/wiki/Electronic_component
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Capacitance
https://en.wikipedia.org/wiki/Electric_circuit
https://en.wikipedia.org/wiki/Electric_double-layer_capacitor


Fig. 6.9 The general symbol of nonlinear 

capacitor. 

The general characteristic of capacitor includes the algebraic relation between the charge  q(t) gathered on its 
plates and the voltage u between the terminals. [6,21]. The typical form of this characteristic represents voltage 
controlled type, which might be presented as q=f(u) for stationary capacitor and q=f(u,t) for non-stationary 
one. In the case of monotonic characteristic we can also obtain its inverse in the form u=f-1(q). 

The current-voltage relation for stationary capacitor, described by  q=f(u), follows from definition of current 

                                                                        (6.38) 

The dynamic capacitance  for nonlinear capacitor is the function of voltage. For example the 
junction capacitance of the p-n junction in a diode can be expressed as a function of diode voltage ud 

                                                                                      (6.39) 
The parameter Cj0 is the capacity of junction at no polarization, uj – threshold voltage, typically in the range 

(0,6 – 1)V, m – exponent of typical value in the range (0.3 – 0.5) depending on the type of junction. 
In the case of nonstationary capacitor described by q=f(u,t) we have 

                                           (6.40) 
As an example, if the charge-voltage of the nonstationary capacitor is expressed in the form 

the current of capacitor is given by 

From the general condition of passivity for capacitor it follows 

                                                               (6.41) 
Assuming stationarity, this condition can be written in the form 

                                                   (6.42) 

If  is positive in the whole range of voltage, the capacitor is passive. 
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Often we deal with a multi-terminal capacitors. Denoting currents, voltages and charges at the terminals in 
a vector form 

                                                      (6.43) 
The current-voltage relations for multi-terminal capacitor may be written as follows 

(6.44) 
or in the compact matrix form 

                                                                                                         (6.45) 
where C(u) is a Jacobian matrix describing the partial dynamic capacitances with respect to elements of 

vector u [3,16]. 
In the case of realization of the nonlinear capacitor of the strictly specified nonlinear characteristic of resistor 

we can use the same structure as for inductor, presented in Fig. 6.8 and composed of mutator loaded by the 
nonlinear resistor. Two types of mutators can be used here: 

• Converter-type mutator 

                                                                                  (6.46) 

• Inwerter-type mutator 

                                                                       (6.47) 
From the chain description of (6.46) we get in the converter-type mutator 

                                                                                       (6.48 
From these equations for the resistor controlled by the voltage iN=g(uN) we obtain 

                                                             (6.49) 

                                                                       (6.50) 
As it is seen the nonlinear characteristic of capacitor depends now from the nonlinear resistor and 

parameters k1 and k2 of mutator. The current voltage relation in the input terminals is described by 

                                                                        (6.51) 
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The nonlinear capacitance C(u) is the equal 

                                                                                     (6.52) 
Similarly for the second type of mutator we have 

                                                                                              (6.53) 
Applying the same mathematical manipulations for nonlinear resistor controlled by the current uN=f(iN) we 

obtain 

                                                                      (6.54) 

                                                                       (6.55) 
The current voltage relation in the input terminals is described by 

                                                                                    (6.56) 
from which the relation describing the implemented capacitance follows 

                                                                                                  (6.57) 
The capacitor of any type of nonlinearity can be implemented by using the nonlinear resistor of the specified 

characteristic and proper type of mutator . 

6.4. Memristors 

A memristor (called memory resistor) is a hypothetical non-linear passive two-terminal electrical component 
relating electric charge q and magnetic flux linkage ψ. It was envisioned, in 1971 by prof. Leon Chua [2]. 
According to the characterizing mathematical relations, the memristor would hypothetically operate in the 
following way. The memristor’s electrical resistance is not constant but depends on the history of current 
that had previously flowed through the device, i.e., the device remembers its history. When the electric power 
supply is turned off, the memristor remembers its most recent resistance until it is turned on again. 

The memristors are intended for applications in nanoelectronic memories, computer logic and 
neuromorphic/neuromemristive computer architectures. In 2013, Hewlett-Packard suggested that memristor 
memory may become commercially available as early as 2018. In March 2012, a team of researchers from HRL 
Laboratories and the University of Michigan announced the first functioning memristor array built on a CMOS 
chip. The graphical symbol of memristor proposed by Chua is presented in Fig. 6.10 [2]. 

Fig. 6.10. Symbol of nonlinear memristor. 

The general description of the stationary memristor may be presented in an implicit form f(ψ,q)=0. We can 
define two types of memristors from this relation. 
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• memristor controlled by the charge 

                                                                                                      (6.58) 

• memristor controlled by the flux linkage 

                                                                                                     (6.59) 
The current-voltage relations for memristor represents the form typical for resistors 

                                                                       (6.60) 

The variable  means memristance, which is equivalent to the charge dependent resistance of the 

resistor. The inverse of memristance is called menductance and defined as . For linear memristors 
we have M=1/W. The relation u(t) = M(q)i(t) implies time varying charge. Furthermore, the memristor is static 
if no current is applied. If i(t) = 0, we find u(t) = 0 and M(t) is constant. This is the essence of the memory effect. 
The power consumption description is typical for resistor, i.e., 

                                                                               (6.61) 
As long as M(q(t)) varies little, such as under alternating current, the memristor will appear as a constant 

resistor. M(q) is physically restricted to be positive for all values of q (assuming the device is passive and does 
not become superconductive at some q). 

In 2008 researchers from HP Labs [5] introduced a model for a memristance function based on thin films of 
titanium dioxide. For RON ≪ ROFF the memristance function was determined as follows 

where Roff represents the high resistance state, Ron – the low resistance state, μv – the mobility of dopants 
in the thin film, and D – the film thickness. 

 
Example 6.2 
To illustrate the performance of memristor consider the circuit structure presented in Fig. 6.11a.  Let us 

determine the current i(t) and voltage u0(t) in this circuit assuming R1=2Ω, R2=1Ω. The piece-wise linear 
characteristic of the hypothetical memristor is shown in Fig. 6.11b and the supply voltage e(t) has the form of 
Fig. 6.11c. 
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a) 

b) 
c) 

Fig. 6.11 The structure of the memristive circuit (a), charge-flux characteristic of memristor (b) and the form of 
the circuit excitation (c). 

 
The dynamic memristance in the particular regions of the flux linkage is equal 

At positive values of excitation the memristor can operate only in the positive ranges of charge, which 
correspond to menductance W2 or W3 (memristance M2 or M3). The current in the circuit behaves like for 
purely resistive elements, i.e., 

and the output voltage u0 is described by the relation 

In the particular region corresponding to the memristance M2 we have 
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Similarly in the case of operation in M3 region we get 

Changing the operation point from M2 to M3 will happen in the time point T0, when the electric charge of 
memristor achieves the value q0. From the relations between current and charge we get 

At the given values of elements we get 

Fig. 6.12 shows the current i(t) in the circuit and the form of output voltage u0(t) as a function of time. 

a) b) 

Fig. 6.12. The time form of: a) current i(t) in the circuit and b) output voltage u0(t). 

6.5 Exercises 

1. Calculate and plot the changes of dynamic parameter of the nonlinear element of the given 

characteristic f(x) shown in Fig. 6.13a. 
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Fig. 6.13a The characteristic of nonlinear element 

Solution: 
The dynamic parameter D in the operating point x0  is described by the equation 

These values are calculated for all piecewise linear regions and the dynamic parameter changes in all 
subregions are shown in Fig. 6.13b. 

Fig. 6.13b The plot of dynamic parameter of the nonlinear element. 

 

1. The nonlinear inductor is described by 

where typical values of the parameters are: a=10.23A/Wb, b=2.4A/Wb3. Calculate and plot the dynamic 
inductance of the inductor. 
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Solution: 
Let us differentiate current with respect to time. Hence we get 

From this we get the expression for inductance L 

Fig. 6.2 presents the characteristics of flux and inductance as a function of current. 

Fig. 6.14 The nonlinear characteristics of the inductor 

1. Junction diode current is described by the equation 

where ud, id represent the voltage and current of the diode, respectively, I0=10-6A and VT=26mV.  Determine 
the dynamic admittance Y of the diode and plot it for 0<ud<0.7V. 

 
Solution: 
After differentiation of the formula for the current we get 

The change of admittance with the voltage ud is plotted in Fig. 6.3. 

It is evident  that for positive polarity of voltage the admittance value increases rapidly (the impedance 
decreases). For the supplying voltage above 0.5V the diode can be treated in practice as the short circuit. 
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Fig. 6.15 The change of admittance  of the diode with the voltage ud 

1. The piecewise linear characteristic of memristor is presented below. Determine the memristance 

and menductance of this element. 

Fig. 6.16 The flux-charge characteristic of the memristor 

Solution: 

The memristance of memristor is defined as . Taking into account the piecewise linear character 
o the memristor characteristic we get 
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Similarly, the menductance  is defined as . Hence, we get 

6.6. Basic definitions 

Bipolar transistor –three terminal  semiconductor device composed of three layers of the terminals: base, 
collector and emitter. Bipolar transistors use two junctions between two semiconductor types, n-type and 
p-type and are manufactured as NPN and PNP. A voltage or current applied to one pair of the transistor’s 
terminals controls the current through another pair of terminals. 

Diac – the diode that conducts electrical current only after its breakover 
voltage, has been reached momentarily. The diode remains in conduction until the current through it drops 
below a value characteristic for the device, called the holding current. Below this value, the diode switches back 
to its high-resistance, non-conducting state. 

Diode – the two-terminal electronic device that conducts current primarily in one direction (asymmetric 
conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the 
other. 

Dynamic parameter – the derivative of the function f(x) describing nonlinear element with respect to its 
argument x in the actual operating point. It measures the sensitivity to change of the function value (output 
value) with respect to a change in its argument (input value). 

Field effect transistor – transistor that uses an electric field to control the electrical behavior of the 
device. They involve single-carrier-type operation. There exist many different implementations of field effect 
transistors (JFET, MOSFET, GASFET, etc.). They generally display very high input impedance at low 
frequencies. The conductivity between the drain and source terminals is controlled by an electric field in the 
device, which is generated by the voltage difference between the source and the gate of the device. 

Memristance – the derivative of the flux with respect to the charge of memristor, . 

Menductance – the derivative of the charge with respect to the flux of memristor, . 
Mutator – the dynamic 2-port used to transform the nonlinear resistor into nonlinear capacitor or nonlinear 

inductor. 
Nonlinear capacitor – the element for which the charge is dependent in nonlinear way from the voltage 

on its terminals. Its general description involves the charge-voltage relation (q, u) and voltage-current relation 
involves the nonlinear differential equation. 

Nonlinear element – electrical device which does not have a linear relationship between current and 
voltage. The  parameters of it are dependent on input variable, either current or voltage. Hence, we recognize 
element controlled by the voltage or current. 

Nonlinear inductor – the element for which the voltage drop across the inductor is not linearly 
proportional to the rate of change of current, such as when the inductor has a core of magnetic material in 
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which magnetic induction is not proportional to magnetic field strength. Its general description involves the 
flux-current relation (ψ, i) and voltage-current relation involves the nonlinear differential equation. 

Nonlinear resistor – the nonlinear element, which is fully friend by the voltage-current relationship 
expressed as the nonlinear algebraic function. No differential or difference equation is involved in its 
description. 

Nonlinear memristor – the hypothetical non-linear passive two-terminal electrical component relating 
electric charge q and magnetic flux linkage ψ. Its general description requires the nonlinear relation charge-flux 
(ψ, q). 

Static parameter – the ratio of the value of the function f(x) describing nonlinear element to the value of 
the independent variable x. 

Thyristor – the semiconductor device with four layers of alternating P- and N-type materials. It acts 
exclusively as a bi-stable switch, conducting when the gate receives a current trigger, and continuing to 
conduct until the voltage across the device is reversed biased, or until the voltage is removed (by some other 
means). It behaves like a controlled diode. 

Triac – the three terminal electronic element that conducts current in either direction when triggered. It 
acts like thyristor, but the current can flow in both directions. 

Tunnel diode – the type of semiconductor diode that has negative resistance due to the quantum 
mechanical effect called tunneling. In certain region of characteristic the electric current decreases as the 
voltage increases. 

Varistor – the electronic device with the resistance that varies with the applied voltage. Its current-voltage 
is similar to that of a diode. However, in contrast to a diode, it has the same characteristic for both directions 
of traversing current. At low voltage it has a high electrical resistance which decreases as the voltage is raised. 

Zener diode – the particular type of diode that allows current to flow not only from its anode to its cathode, 
but also in the reverse direction, when the Zener voltage is reached. By contrast with the conventional diode, a 
reverse-biased Zener diode exhibits a controlled breakdown and allows the current to keep the voltage across 
the Zener diode close to the Zener breakdown voltage (stabilization of voltage). 
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7.   Analysis of nonlinear resistive circuits 

7.1. Introduction 

The main difference, which is very important in analysis of nonlinear circuits, is impossibility of applying the 
superposition theorem [3]. It means, that the analysis should be performed at the simultaneous existence of 
all sources of different character. It complicates the computation process. At the same time the circuit may 
show many different solutions, depending on the starting point of analysis and in general we never know what 
is their number. Additional problem is lack of general analytical methods of solution of the set of nonlinear 
equations, which is in a great contrast to the linear systems, for which many algebraic methods exist. 

This chapter will be devoted to selected methods of analysis of nonlinear resistive circuits only at DC 
excitation. The sinusoidal sources should be analyzed step by step for succeeding points of time, distant from 
each other by the assumed increment. 

The formulation of the description of the complex nonlinear circuit is performed by applying the Kirchhoff’s 
laws and description of the characteristics of nonlinear elements. As a result of such approach we get the 
system of nonlinear equations, which can be written in the general form f(u,i)=0, where u and i are the vectors 
of voltages and currents of circuit elements, respectively. 

This set of equations is then subject to solution. Unfortunately, in general case there are no analytical, 
algebraic methods of solution of the system of nonlinear equations. Only in very special cases they exist. 
To such methods belong the graphical methods and graph-analytical methods applying the piece-wise 
linearization of nonlinear characteristics. The only general method, which can deliver the solution of the 
system of nonlinear equations are the iterative numerical methods, based on Newton algorithm. This chapter 
will present some chosen approaches to the solution of nonlinear circuits. 

 

7.2. Selected methods of solution of nonlinear circuits 

7.2.1. Graphical methods 
The graphical methods operate directly on the characteristics of the elements. The analysis aims on 

simplification of the circuit by finding equivalent characteristics of series and parallel connected elements [16]. 
The current flowing through the elements connected in series is the same, while total equivalent voltage is 

the sum of the voltages of elements. It means that these operations may be written in the form 

                                                                                                        (7.1) 
where the variables (u, i) mean, respectively, voltage and current of the equivalent element and (u1, i1), (u2, 

i2) the corresponding variables of the first and second element. The addition of voltages is done for the current 

177



points common to both nonlinear elements. Having the equivalent characteristic of the circuit supplied by the 
voltage or current source we can read from this characteristic the lacking variable (current in the case of voltage 
excitation and voltage at current source). 

 
Example 7.1 
The example of two nonlinear elements connected in series and supplied by the voltage source is shown 

in Fig. 7.1a. The current-voltage characteristics and their equivalent of the series connection are presented in 
Fig. 7.1b. The characteristic denoted by u1+u2 was obtained by adding voltages in vertical direction for the 

succeeding values of current. 

a) 

 

b) 

Fig. 7.1. Example of two nonlinear elements connected in series: a) the circuit configuration, b) the 
characteristics of elements and their equivalent characteristic. 

From the equivalent characteristic (red) at given value of supply voltage u we can read the current i, which 
flows in both resistors. Having this value we can immediately read the voltage of both resistors from the their 
respective characteristics. 

In the case of parallel connection of nonlinear elements the voltage of both elements is common, while the 
equivalent current is the sum of currents of the individual resistors. It means, that the equations describing 
such connection may be written as follows 

                                                                                                        (7.2) 
where the variables (u, i) are the voltage and current of the equivalent element. The addition of currents 

should be done point by point at constant value of the voltage u of both nonlinear elements. 
 
Example 7.2 
The example of parallel connection of two nonlinear elements is shown in Fig. 7.2a. Their current-voltage 
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characteristics as well as their equivalent are presented in Fig. 7.2b. The characteristic denoted by i1+i2 was 

obtained by adding currents in horizontal direction for the succeeding values of voltage. 
 

a) 

b) 

Fig. 7.2. . Example of two nonlinear elements connected in parallel: a) the circuit configuration, b) the 
characteristics of elements and their equivalent characteristic. 

 
Example 7.3 
Another practical example of application of the graphical methods will be presented for diode-resistor 

circuit, connected in series with the ideal voltage source shown in Fig. 7.3a. The ideal diode characteristic is 
treated as either short circuit (when the diode voltage is non-negative) or open circuit (when the diode voltage 
is negative). 
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a) 
b) 

Fig. 7.3. Example of diode circuit configuration (a) and construction of the equivalent characteristic (b). 
As a result of adding these three characteristics (diode + resistor + ideal voltage source) we get their 

equivalent, representing the circuit from the input terminals point of view (the continuous line). 
 
7.2.2. Graphical-analytical methods based on piece-wise linearization 
This method applies piece-wise linear (PWL) approximation of the nonlinear characteristics. Each linear 

section of characteristic is represented by the linear elements (resistor and source). 
Generally speaking, piecewise-linear models have universal approximation properties, which means that any 

nonlinear function can be approximated by a PWL function with arbitrary accuracy, provided that the function 
domain is partitioned in a large enough number of subdomains where the function is approximated in a linear 
way [3,16]. 

In this way the nonlinearity disappears and the circuit is fully piece-wise linear, easy for analysis using 
any known method from linear circuit theory. However, many such PWL circuits may be formed. As a result 
of analysis of these circuits we obtain many solutions determining voltages (vector u=[u1, u2, …, un]T,) and 

currents (vector i=[i1, i2, …, in]T) of the particular branches of the circuit. Not all of them can be accepted, since 

some solutions may be not located in the considered piece-wise sections of the nonlinear resistor. The only 
accepted solutions are related to the balance (equilibrium) points, in which the values of current and voltage 
found in solution, agree with the actually considered section of the PWL approximation of nonlinear element. 

This approach is very easy for the circuit containing only one nonlinear element. In such case, according to 
Thevenin theorem, the complex linear part of the circuit can be represented from the terminals of nonlinear 
element by the series connection of the equivalent resistance RAB and ideal voltage source UAB. The nonlinear 
element described by uN=f(iN) is then added to this Thevenin equivalent circuit forming in this way the one-

loop circuit, which is easy in analysis. Such situation is illustrated in Fig. 7.4. 

Further analysis needs drawing the characteristics for linear and nonlinear parts of the circuit in common plot. 
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Fig. 7.4. One-loop circuit with the nonlinear element. 

The crossing points of the load line of the linear part and the nonlinear characteristic show the possible sections 
of the nonlinear characteristic, which should be taken into account in the analysis. 

Observe, that in one loop circuit there is only one (common) current iN of linear and nonlinear part of the 

circuit. Moreover, the voltage UN is also appearing in a linear part of the circuit (because of parallel connection). 

Therefore, the equilibrium point can be determined from the Kirchhoff’s law, which is written in the form 

                                                                                      (7.3) 
The solution of this equations exists in the crossing point of the linear part of circuit described by 

 and the original nonlinear characteristic . Applying PWL 
representation of this characteristic we transform the equation (7.3) to the linear equation of unique solution 
in each section. 

 
Example 7.3 
As an example consider the nonlinear circuit structure presented in Fig. 7.5a. Assume following values 

of parameters: R1=15Ω, R2=5Ω, R3=8Ω, R4=4Ω, R5=6Ω, e1=50V, e2=20V, i=10A. Fig. 7.5b represents the 

characteristic of the nonlinear element. 

 

a) 

b) 
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Fig. 7.5. Example of analysis of nonlinear resistive circuit: a) circuit structure, b) characteristic of nonlinear 
element. 

The equivalent Thevenin circuit representing the linear part from the A-B terminals, is shown in Fig. 7.6a. 
The values of the elements are as follows: 

, 

. 
The solution can be determined by solving the balance equation following from Kirchhoff’s law 

. Drawing the load line, determined by the linear part of circuit 

 in common plot with the nonlinear characteristic 

, we get three equilibrium points: P1, P2 and P3 which form three possible solutions of the 

nonlinear circuit of Fig. 7.5a can be found. 

a) 

b) 

Fig. 7.6. The illustration of PWL solution of the nonlinear circuit: a) the simplified one-loop circuit following 
from Thevenin theorem, b) the equilibrium points resulting from crossing the load line and nonlinear 
characteristic. 

 
All three solutions should be calculated subsequently. The linear equation representing the first section with 

point P1 is given in the form uN=100iN. Hence the balance equation is as follows 

90 – 15.4iN=100 iN 

Solving it we obtain immediately iN=0.78A, uN=78V. 

The point P2 corresponds to the linear equations of the next section of PWL, which can be written in the 
form uN=-40iN+140. Hence the balance equation is as follows 

90 – 15.4iN =-40iN+140 

Solving it we get iN=2.03A, uN=58.8V. 
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Point P3 corresponds to the linear equations of the next section which is described by the linear equation in 
the form uN=40/3iN-20. Hence the balance equations is as follows 

90 – 15.4iN=40/3iN-20 

Solving it we get the current and voltage of nonlinear element: iN=3.83A, uN=31.1V. As we can see there 

are three possible solutions of the circuit. The particular value depends on the starting point on the nonlinear 
element characteristic applied by the algorithm. 

 
7.2.3. Application of PWL in analysis of complex nonlinear circuits 
In the case, when few nonlinear elements are included in the circuit, the direct application of Thevenin 

theorem is impossible. However, PWL representation of nonlinear characteristic is still possible in solution to 
the problem. Each nonlinear element is represented by the set of PWL representations and the kth PWL section 
is represented by the connection of linear model of resistor R(k) and ideal voltage u(k) or current i(k) source. It 
might be the series connection of elements 

u= R(k) i+ u(k)                                                                                                   (7.4) 
or parallel connection, for which G(k)=1/R(k) 
i= G(k)u+ i(k)                                                                                                   (7.5) 
The values of resistance and source are different for each PWL section. Further procedure of solution takes 

into account all possible combinations of nonlinear element representation. The number of these combination 
might be very high, however, in each case we have to solve the linear system of equations, delivering the 
numerical values of current and voltage (uN, iN) of nonlinear elements considered in the combination. If this 

solution is within the considered region of PWL approximation we accept it as the real solution of the nonlinear 
circuit, otherwise reject it. To reduce the number of possible combinations we can apply some pre-analysis of 
the circuit, excluding in advance some combinations. 

 
Example 7.4 
The presented above analysis method will be illustrated on the example of the circuit shown in Fig. 7.7. This is 

the popular circuit implementing the absolute value of the input voltage u. Let us assume the ideal operational 
amplifier (infinite gain, infinite input impedance and zero output impedance) and ideal diode (short circuit at 
non-negative voltage between anode and cathode and open circuit for negative value of this voltage). 

Fig. 7.7. The circuit structure implementing the absolute value of the input signal 

Observe that irrespective of polarity of the input voltage u the feedback resistance R of the first amplifier is the 
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same (at positive polarization of u the diode D2 is conducting and at negative polarization the conducting diode 

is D1). It means, that in both cases VC is determined by 

                                                                                          (7.6) 
Now, two cases might happen in the operation of this circuit. 

1. Input voltage u≥0 

In this case we have VC≤0, diode D2 is conducting and represents the short circuit, hence VC=VB=-u. The 

output voltage is now defined by the relation 

                                                         (7.7) 

1. Input voltage u≤0 

In this case VC≥0, diode D1 is conducting and represents the short circuit, and diode D2 is open, hence 

VB=0. The output voltage is described now by the relation 

                                                                      (7.8) 
Hence, irrespective of the polarity of the input voltage we have the output signal described as the 

absolute value of the input signal, i.e., 

                                                                                                                (7.9) 
 
Example 7.5 
As the second example consider the nonlinear circuit presented in Fig. 7.8. The voltage source E represents 

the polarization, of the value adjusted by the user. The searched characteristic of the circuit is the input current 
i as the function of input voltage u. Once again we assume the operational amplifiers and diodes as ideal 
elements. 

Fig. 7.8. The nonlinear circuit under analysis in example 7.5 

In contrast to the previous example the feedback resistance of the first amplifier is either zero (when diode D1 

is conducting) or R4 (when D1 is open and D2 conducting). Consider two cases of the polarity of input voltage 

u. 
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1. Input voltage u≤E 

In this case the E>u, hence Δu=u-E≤0 and VA≤0. At such polarization the diode D1 is conducting and 

represents the short circuit, the diode D2 is open. At ideal amplifier the potential of both input terminals 

of operational amplifier is the same and equal u. This voltage is also transferred to the output VA of 
amplifier. Resistor R4 does not conduct current, hence VB=u. This voltage is transferred to the point C of 

the second amplifier resulting in VC=VB=u. Hence the input current of the circuit is equal 

                                                                                    (7.10) 

1. Input voltage u≥E 

In this case we have Δu=u-E≥0 and VA≥0. At such polarization diode D2 is conducting and represents 

the short circuit (VA=VB), and diode D1 is open. The resistor R4 represents now the feedback of the first 

amplifier. As a result we get the simplified form of first amplifier connection presented in Fig. 7.9a. The 
Mason graph corresponding to this circuit is shown in Fig. 7.9b. 

a) 
b) 

Fig. 7.9. The simplified circuit for the second polarization u≥E (a) and SFG representation of this circuit (b). 
 
Assuming the gain A tending to infinity, from the Mason gain formula, we get 

                                                                             (7.11) 
Taking into account VC=VB the input current of the circuit can be described by 

                                                (7.12) 
Hence, the final form of the input current can be presented in the form 

                                                                          (7.13) 
Fig. 7.10 presents the current-voltage characteristic of the considered circuit. The slope of the characteristic 

in the range u≥E is equal G=-R4/(RR3). It represents the negative conductance. 
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Fig. 7.10. The current-voltage characteristic of the circuit of Fig. 7.8 

7.2.4. Numerical methods of solution of nonlinear equations 
The nonlinear circuit is represented in the general form 

                                                                                            (7.14) 
where vector x represents the unknown currents and voltages of the branches. The size of this vector 

depends on the number of nonlinear elements. Analytic methods via algebraic approach do not exist in general 
case. Therefore, the numerical methods can be used instead to approximate the solution of equations. They 
construct successive approximations in an iterative way, that converge to the exact solution of an equation or 
system of equations. 

The simplest approach to the problem is the so called simple iteration method. According to it the eq. (7.14) 
is transformed to [3,6,7] 

                                                                                                (7.15) 
The succeeding iterations are defined in the form 

                                                                                        (7.16) 

and lead finally to the solution in the point xn+1, in which , where ε is the assumed 
tolerance. This method is usually very slow and shows linear convergence, in which the error is reduced by 
a constant factor every iteration, for example, the number of accurate digits increases by 1 every iteration. 
Unfortunately, its convergence strictly depends on the initial point in calculation. In start far from the solution 
the method may even diverge. 

Much better are the methods of quadratic convergence, in which the number of accurate digits doubles 
every iteration. Such property is associated with Newton method [3,7,16]. Newton method is the most powerful 
approach that is used to solve the equation f(x) = 0. This method originates from the Taylor’s series expansion 

of the function  about the actual point xj. Limiting the expansion to the first order term we have 

                                                                       (7.17) 
Assuming x= xj+1 as the approximate solution to the system of equations we may write 
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                                                                        (7.18) 
Rearranging the (7.18) we obtain the next approximation of the solution, giving us: 

                                                                              (7.19) 

The function  is the Jacobian matrix calculated in the actual point of solution x=xj. This matrix is 
defined as follows 

                                                        (7.20) 
Newton’s method converges quadratically. When carrying out this method the system converges quite 

rapidly once the approximation is close to the actual solution of the nonlinear system. Hence, good initial guess 
is extremely important in nonlinear solvers. 

In general Newton’s method may require less iterations, compared to another methods with a lower rate of 
convergence, to reach the solution. However, when the system does not converge, this is an indicator that an 
error in the computations has occurred, or a solution may not exist. 

One of the advantages of Newton’s method is that it is not too complicated in form and can be used to solve 
a variety of problems. The major disadvantage associated with Newton’s method, is that the Jacobian matrix 
J(x), as well as its inversion, has to be calculated for each iteration. Calculating both the Jacobian matrix and 
its inverse can be quite time consuming depending on the size of the system is. Another problem, that we may 
be challenged with when using Newton’s method, is that it may fail to converge. If Newton’s method fails to 
converge this will result in an oscillation between points. 

Relatively simple is the graphical interpretation of the Newton’s method. It will be shown for the scalar 
equation f(x)=0. For such simplified problem the solution can be written as follows 

                                                                    (7.21) 
Its graphical interpretation is depicted in Fig. 7.11. The new solution point xj+1 is placed on the crossing 

point of the slope of the curve f(xj) with the horizontal coordinate x. Repeating this procedure in the succeeding 
iterations we will end in the true solution indicated in the figure as point Q. 

 
It should be noted that Newton’s method does not provide automatically the convergence to the true 

solution. If the starting point is far from the true solution the process may be divergent or the process may 
oscillate around the equilibrium point. In the latter case we can stabilize the process by introducing the so 
called damping coefficient λ of varying value. In such case the algorithm is modified as follows [4] 

                                                                              (7.22) 
at the value of λ in the range [0 – 1]. However, the most suggested solution is to find starting point as close 

to the expected solution as possible. Quite often, the graphical methods of analysis are employed, to find the 
starting point for further iterations. 
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Fig. 7.11 Interpretation of the Newton’s method for scalar equation f(x)=0. 

 

7.3 Application of Matlab in solving the system of nonlinear equations 

Matlab has many functions (grouped in the optimization toolbox [11]) which can be employed for solution 
of the system of nonlinear equations, defined in the standard form f(x)=0. In this section we will show the 
application of the function fsolve in solution of the set of nonlinear function written in the vector form 

                                                                                     (7.23) 
The unknown variables xn are grouped in the n-dimensional vector x. Function fsolve can be used with the 

additional parameters p1, p2, … defined by the user. Full form of calling this function is as follows 
 
[x,fval,exitflag,output,jacobian]=fsolve(fun,x0,options,p1,p2,…) 
 
and short form requires only to have the file fun, defining the set of nonlinear equations f(x) and starting 

point x0. The function accepts also the explicitly defined Jacobian matrix . 
 
Example 7.5 
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As an example consider the application of the function fsolve [11] to analyze the nonlinear resistive circuit 
of the structure presented in Fig. 7.12. The nonlinear elements and values of the sources are as follows 

, , , , 
Find the solution for the voltages u1, u2 and the current i3 of nonlinear elements for the excitation of e1 

changing from -2V to 3V. 

Fig. 7.12. The nonlinear resistive circuit structure 

First, we have to find the description of the circuit in the standard form f(x)=0, which is required by the Matlab 
program. From the Kirchhoff’s law we have 

                                                                                   (7.24) 
Rearranging the (7.24) we obtain the required form fi(x)=0 for i=1, 2, 3. 

                                                                   (7.25) 
The vector x is formed by the voltages of the first and second nonlinear element and the current of the third 

one, i.e., x=[u1, u2, i3]T. The main program lines and the function file objnonl.m defining the function f(x) are 
presented below. The change of the excitation e1 is done in the program through the additional parameter p1 
controlling the value of e1. 

% Main program lines 
options=optimset('LargeScale','off','MaxFunEvals', 1000) 
p1=-2:.2:3; 
x0=[0 0 0]; 
np=length(p1); 
for i=1:np 
e1=p1(i); 
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[x,fval]=fsolve('objnonl',x0,options,e1) 
y(i,:)=x; 
end 
plot(p1,y(:,1),'-',p1,y(:,2),'--',p1,y(:,3),'-.') 
grid 
title('Solution of nonlinear circuit') 
legend('u1','u2','i3') 
xlabel('e_1') 
ylabel('u1, u2, i3') 
function f=objnonl(x,e1) 
% File defining f(x)=0 
u1=x(1); u2=x(2); i3=x(3); 
e2=1; e3=5; 
f(1)=-3*u1^3+5*u2^5+2*u2+i3; 
f(2)=u1+u2-e1+e2; 
f(3)=u1+i3^3-9*i3-e1+e3; 

The obtained results presenting the changes of u1, u2 and the current i3 as a function of the input voltage e1 
are depicted in a graphical form in Fig. 7.13. 

Fig. 7.13. The changes of the voltages and current of nonlinear element versus e1. 

 
Example 7.6 
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As the next example consider the application of fsolve to the solution of the magnetic circuit presented in 
Fig. 7.14a. The concept of a magnetic circuit exploits a one-to-one correspondence between the equations of 
the magnetic field in the ferromagnetic material to that of an electrical circuit. Using this concept the magnetic 
fields of complex devices (like the circuit in Fig. 7.14a) can be quickly solved using the methods and techniques 
developed for electrical circuits. 

 
a) 

b) 

Fig. 7.14. Structure of the magnetic circuit excited by the currents I1 and I2 (a) and its equivalent nonlinear 
resistive circuit (b) 

 
The magnetic circuit in the example is made up of the closed loop paths containing three branches of 

magnetic cores consisting of ferromagnetic materials (iron) and small air gap in the middle branch. Assume the 
given magnetization curve and all dimensions (length and cross areas) of the magnetic cores and air gap as well 
as the values of currents I1 and I2 and number of wires zi of the coils. 

In the first step we have to describe the magnetic circuit by proper set of equations. The magnetic circuit 
can be treated as a special type of nonlinear electrical circuit in which the variables are: magnetic fluxes 

, magnetic flux density Bi, magnetic field Hi, the magnetic potential difference Hili of the branches and 
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magnetomotive force (MMF) defined as an excitation ziIi (equivalent to the electrical voltage source). Similar 
to the way that electromotive force (EMF) drives a current in electrical circuits, magnetomotive force (MMF) 
drives magnetic flux through magnetic circuits. 

Specific for magnetic elements is the magnetic curve B=F(H), relating magnetic flux density B to the magnetic 
field H. In numerical calculations this curve is described in a discrete way in the form of the given points (Hi, 
Bi). To find their values between these points we will use the spline function of Matlab [10]. Third order spline 
is used to calculate any value (Hi, Bi) in the calculations. It is called in the way 

B=spline(HH,BB,H) 
where the variables HH, BB represent the given (known) points of magnetization curve. The H is the actual 

value of magnetic field for which the magnetic flux density B is searched. 
In preparation of equations describing the magnetic circuit we will use its equivalent electrical circuit (Fig. 

7.14b), in which the role of current fulfills flux , the branch voltage – the magnetic potential difference Hili of 
the element of the length li in which the magnetic field Hil is present, the voltage source – the magnetomotive 

force  (zi – number of turns of the coil). Applying Kirchhof’s law for such defined electrical 
equivalent we may write 

                                                  (7.26) 

All variables  for i = 1, 2, 3 are fully defined by the magnetic curve, common to all 

ferromagnetic branches, and . The fluxes are equal 

 for i = 1, 2, 3. As a result we get the following system of nonlinear equations 

                                               (7.27) 
This system of equations represents the general vector form f(x)=0 which is needed by the function fsolve. 

Vector x of unknown variables contains three variables x=[H1, H2, H3]T. The Matlab program implementing 

numerical calculations related to the problem is presented below. 

% Main program 
global HH 
global BB 
global p 
H0=[0 0 0]; 
p=[ -1 -0.5 0 0.5 1 1.5 2]; 
% Magnetic curve HH-BB 
HH = [-4500 -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 ... 
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500]; 
BB = [-1.63 -1.60 -1.56 -1.51 -1.45 -1.38 -1.25 -1.0 -0.62 ... 
0 0.62 1.0 1.25 1.38 1.45 1.51 1.56 1.60 1.63 1.65 1.66]; 
% Loop for changing the excitation p 
for i=1:length(p) 
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i1=p(i) 
H=fsolve(@fun_magn, H0,optimset('fsolve'),i1); 
y1(i,:)=H; 
y2(i,:)=spline(HH,BB,H); 
end 
% Graphical results 
subplot(211),plot(p,y1(:,1),'-', p,y1(:,2),'--', p,y1(:,3),'-.') 
grid, xlabel('i1'), ylabel('H1, H2, H3') 
title(' Results of analysis of magnetic circuit') 
subplot(212),plot(p,y2(:,1),'-', p,y2(:,2),'--', p,y2(:,3),'-.') 
grid, xlabel('i1'), ylabel('B1, B2, B3') 
function f=fun_magn(H, i1) 
global HH, global BB 
% Data of magnetic circuit 
l1=0.20; l2=0.10; l3=0.20; lp=0.001; 
s1=0.001; s2=0.002; s3=0.001; 
z1=1000; z2=500; i2=1.5; mi0=4*pi*1e-7; 
% Magnetic flux density 
B(1)=spline(HH, BB, H(1)); 
B(2)=spline(HH, BB, H(2)); 
B(3)=spline(HH, BB, H(3)); 
% Equations of the circuit f(x)=0 
f(1) = H(1)*l1 + H(3)*l3 + lp*B(3)/mi0 - z1*i1; 
f(2) = H(2)*l2 + H(3)*l3 + lp*B(3)/mi0 - z2*i2; 
f(3) = s1*B(1) + s2*B(2) - s3*B(3); 

The results of circuit analysis in the form of dependence of magnetic field Hi and flux density Bi (i=1, 2, 3) for 

different values of excitation i1 are presented in Fig. 7.15. The least nonlinearity is observed in the third branch 

(H3, B3), containing the air gap. 

 

7.4 Exercises 

1. Find all solutions of the nonlinear resistive circuit given below 

Assume characteristic uN=f(iN) of the nonlinear element as shown in Fig. 7.16b and E=100V, R1=10Ω, R2=40 Ω. 

 
Solution: 
Let us apply Thevenin method of solution. The equivalent Thevenin circuit structure is presented in Fig. 

7.16c. 
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Fig. 7.15. The results of analysis of magnetic circuit as a function of excitation i1: a) magnetic field in three branches of magnetic 

core (scale x104), b) magnetic flux density in these branches. 

Fig. 7.16a The nonlinear circuit structure 

The values of equivalent elements are as follows: 

The operating points of the circuit require satisfying the following equation 
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Fig. 7.16b The nonlinear element characteristic uN=f(iN)  and load line (dotted 

Fig. 7.16c Thevenin equivalent of the circuit of Fig. 7.1a. 

The left side of the equation represent the load line and the right side the characteristic of nonlinear element. 
The load line is described by the equation 

Their crossing will result in three solution points: P1, P2 and P3. These points are located on three different 

linear sections of the characteristic. Hence we get three solutions following from the appropriate equations. 

1. A) Solution P1 

1. B) Solution P2 
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1. C) Solution P3 

 

1. Describe the nonlinear circuit given below by the set of nonlinear equations. Assume 

 

Fig. 7.17 The nonlinear circuit structure 

Solution: 
From Kirhhoff’s equations we get 

After rearranging them we get their final form f(x)=0 

 

1. Calculate mean value of the current in the circuit shown below. Assume e(t)=100sin(ωt), R=100Ω 

and diode as the nonlinear resistor of the resistance in positive polarity equal 0.5Ω and for negative 

polarity 10kΩ. 
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Fig. 7.18 The circuit structure with diode 

 
Solution: 

The current in conducting state of diode (positive polarity for  ) is equal 

Similarly the current at negative polarity (for  ) is equal 

The mean value I of the current over the period of sinusoid is equal 

 

1. Nonlinear circuit is described by the set of equations 

Apply one step of Newton solution method at starting point: x1(0)=1, x2(0)=0. 

 
Solution: 
The first point is to calculate the elements of the Jacobi matrix J at the starting point. This matrix is in our 

case described by 

Performing these calculations at starting point we get 
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Hence the next step solution of the nonlinear system equations is of the form 

 

7.5 Basic definitions 

Field strength – the measure of intensity of a magnetic field H expressed in amperes per meter (A/m). It is 
related to magnetic flux density B by the relation B=µH. 

Flux density – the measure B of magnetic field expressed in Newton-meters per ampere (Nm/A), also called 
tesla (T). 

Graphical method of analysis – the method of analysis of nonlinear circuit. It operates directly on 
the characteristics of the elements. The analysis aims on simplification of the circuit by finding equivalent 
characteristics of series and parallel connected elements. 

Jacobian matrix – matrix named after Jacoby is the matrix of all first-order partial derivatives of a vector-
valued function. In the case of square matrix, both the matrix and its determinant are commonly referred to as 
the Jacobian. 

Magnet – a piece of iron, or of certain other materials, that attracts or repels other pieces of iron. 
Magnetic field – the vector field that describes the magnetic influence of electrical currents and magnetized 

materials. It includes the area in which the pull of a magnet, or thing acting like a magnet, is felt. 
Magnetic flux – the magnetic flux (denoted by Φ) through a surface is the surface integral of the normal 

component of the magnetic field B passing through that surface. The SI unit of magnetic flux is the weber (Wb), 
equivalent to volt volt-seconds (Vs). 

Magnetic potential difference – the product of magnetic field strength H and the length of the branch l
 in magnetic circuit. 

Magnetomotive force (MMF) – the excitation zI (source) in magnetic circuits (equivalent to the electrical 
voltage source). 

Newton-Raphson method – the  method named after Isaac Newton and Joseph Raphson, is a method for 
finding successively better approximations to the roots (or zeroes) of a real-valued function. 

Nonlinear circuit – the electrical circuit containing at least one nonlinear element. In contrast to linear 
circuits the superposition rule is not valid in such circuit. Moreover, nonlinear circuit may possess many 
solutions, not a single one as it is in linear circuits. 

PWL approximation – an approximation to a known curve by sampling the curve and interpolating 
linearly between the points. 
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